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to the selective catalytic reduction of NO with C3H6
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Abstract

A high-throughput approach, aided by multi-objective experimental design of experiments based on a genetic algorithm, was used to optimize
the combinations and concentrations of a noble metal–free solid catalyst system active in the selective catalytic reduction of NO with C3H6. The
optimization framework is based on PISA [S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, Proc. of EMO’03 (2003) 494], and two state-of-the-art
evolutionary multi-objective algorithms—SPEA2 [E. Zitzler, M. Laumanns, L. Thiele, in: K.C. Giannakoglou, et al. (Eds.), Evolutionary Methods
for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), International Center for Numerical Methods
in Engineering (CIMNE), 2002, p. 95] and IBEA [E. Zitzler, S. Künzli, Conference on Parallel Problem Solving from Nature (PPSN VIII),
2004, p. 832]—were used for optimization. Constraints were satisfied by using so-called “repair algorithms.” The results show that evolutionary
algorithms are valuable tools for screening and optimization of huge search spaces and can be easily adapted to direct the search towards multiple
objectives. The best noble metal free catalysts found by this method are combinations of Cu, Ni, and Al. Other catalysts active at low temperature
include Co and Fe.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

High-throughput experimentation (HTE) and combinatorial
methods for the development of new catalysts are attracting in-
creasing attention in both industry and academia [1–6]. One
important element in HTE, common to both homogeneous and
heterogeneous catalysis, is the design of experiments and of li-
braries to find new and improved catalysts. The need is for intel-
ligent methods that are able to direct the screening to the desired
direction and minimize the number of experiments needed to
achieve a significant improvement. Evolutionary methods, such
as genetic algorithms, have been found to be efficient and highly
flexible in solving various combinatorial and global optimiza-
tion problems in complex and multidimensional spaces [7]. Di-
rected evolution has proven a versatile and powerful method
for the generation of combinatorial libraries and development
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of biocatalysts [8–10]. The design of combinatorial libraries in
the drug industry has one application of this method [11–13].
In the field of heterogeneous catalysis, Wolf et al. [14] were
the first to use an evolutionary approach to optimize the com-
binations of elements of multicomponent solid catalysts. Since
then, several groups have optimized solid catalysts with the aid
of genetic algorithms [15–19]. However, up to now, the search
has been conducted toward one sole objective. In real world
problems and especially in catalysis, several, often conflicting
objectives generally must be taken into account. Thus, methods
that are able to find optimal solutions with respect to several
goals are needed.

In general, a multi-objective optimization problem can
be defined as finding a vector of decision variables, x =
(x1, x1, . . . , xm) ∈ X, in the decision space X that optimizes
a vector function f : X → Y by assigning the quality of a
specific solution x to a vector of objective variables y =
(y1, y1, . . . , yn) ∈ Y in the multidimensional objective space Y.
In the case of a solid catalyst, the decision variables can be any
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set of appropriate descriptors to be optimized. A functional re-
lation should exist between the m decision variables and the
n objective functions. A quantitative structure activity relation-
ship (QSAR) model, which can assign the quality of a solution x
to the objective vector y, can be used for modeling such a prob-
lem [20–22]. However, up to now QSAR, modeling of complex
systems, such as solid catalysts, carries a high error in predic-
tion. Thus, a model must first be developed. For this reason,
when screening for new solutions in unknown decision spaces,
evaluation of the objective functions can be done only exper-
imentally or using a hybridization of an experimental and a
QSAR approach. In the present work, we focus on the purely
experimental approach.

In the last few years, in the light of the energy problem
and global warming, additional efforts have been made to pre-
vent the release of substances that amplify these environmen-
tal problems. Therefore, diesel and lean-burn gasoline engines
are becoming more and more attractive compared with regu-
lar gasoline engines due to the higher efficiency with respect to
fuel consumption. Also, increasingly stringent emission regu-
lations of harmful substances for vehicles urgently require new
catalysts that are highly active for the selective reduction of ni-
trogen oxides in oxygen-rich conditions. One group of possible
catalysts are noble metal–free metal oxides. The number of pos-
sible combinations is vast, and some have been investigated on
various supports in recent years [23–25].

In this work, we present a method for experimental optimiza-
tion with respect to multiple objectives. We focus on the opti-
mization of metal oxides consisting of combinations of 11 ele-
ments, selected from the transition metal (Cu, Ni, Co, Fe, Mn),
lanthanide (La, Ce, Sm), and alkali metal (K, Sr) groups. Alu-
mina was used as the support, because of its ability to develop
high surface area and its high hydrothermal stability. A combi-
natorial, evolutionary directed, high-throughput multi-objective
optimization approach was applied to this system. Due to its
importance in industry, the selective catalytic reduction of ni-
trogen oxide with C3H6 is used as a test case for this approach.

Two important factors that determine the quality of a cata-
lyst include the maximum conversion that can be achieved and
the temperature at which high conversion is possible. Due to
the fact that most of the restricted compounds are emitted in the
early phase of the driving cycle, when the catalyst is still cold,
a low temperature for high conversion is preferable. Thus, the
catalysts will be optimized with respect to two objectives: the
conversion to nitrogen and the temperature at which the yield is
maximal (the so-called “peak” or “light-off” temperature). We
applied two different multi-objective algorithms—SPEA2 [26]
and IBEA [27]—to this problem. We compare and discuss the
results of the two algorithms, emphasizing some implementa-
tion and encoding issues common to heterogeneous catalysis.

2. Experimental

2.1. Catalyst synthesis

The mixed oxide catalysts were prepared by the activated
carbon route [28,29], using metal nitrates as precursors. Acti-

vated carbon (R1424, Carbotec/Rütgers) from the same activa-
tion batch was used as an exotemplate because of its exceptional
properties: high purity (ash content <0.5 wt%) and very high
BET surface area (1800 m2/g) and pore volume (0.9 cm3/g).
The pore system consists of a very high fraction of micropores
with diameter <1 nm, with particles almost uniform spheres
200–400 µm in diameter. The impregnation was carried out by
an automated liquid-handling robot (ABIMED) using 2 M pre-
cursor solutions of the corresponding metal nitrates: Ni(NO3)2
from Fluka, purum p.a.; Cu(NO3)2, Co(NO3)2, La(NO3)3
from Fluka puriss p.a.; Al(NO3)3, K(NO3), Sr(NO3)2,
Mn(NO3)2, Fe(NO3)3 from Merck, GR for analysis; Ce(NO3)3
and Sm(NO3)3 from Acros Organics (99.9% pure). After the
precursor solutions were mixed by the robot, the mixed so-
lutions were used to impregnate the activated carbon using a
slight excess of solution (for 1 g of activated carbon, 0.99 mL
of solution). Calcination was performed without additional dry-
ing at 973 K for 3 h in air to combust the carbon, resulting in
the formation of the mixed metal oxides. The resulting mixed
oxide particles were also uniform and spherical in most cases,
and of similar diameter as the carbon exotemplate, as can be
seen in Fig. S1 for a representative Cu/Ni/Al particle.

2.2. Characterization

Powder X-ray diffraction (XRD) patterns were obtained us-
ing a Bragg–Brentano diffractometer (PANalytical, X’Pert Pro).
The data were collected using CuKα radiation (1.54056 Å),
a secondary Ni-filter, and an X’Celerator detector. Patterns
were recorded in the range of 15–70◦ 2Θ and a step width
of 0.0167◦. Nitrogen physisorption isotherms were measured
using a Quantachrome NOVA 3000e sorptometer at liquid ni-
trogen temperature (77 K), after outgassing under vacuum at
523 K for at least 2 h. Particle shape and size were estimated by
scanning electron microscopy (SEM) using a Hitachi S-3500N
scanning electron microscope operating at 10 kV. The samples
were coated with a thin layer of gold before analysis.

2.3. Catalytic testing

A stage II high-throughput screening concept using a 49
parallel stainless steel gas-phase reactor from hte Aktienge-
sellschaft, built according to the principles described in Kiener
et al. [30], was used for testing the catalytic activity of the
mixed oxide catalysts in the selective catalytic reduction of
NO with C3H6 under lean-burn conditions. Fig. 1 shows sev-
eral images of the reactor setup. The catalysts were activated
at 573 K under a nitrogen flow for at least 2 h before cat-
alytic testing. The measurements were performed under a mix-
ture of 2000 ppm C3H6, 1500 ppm NO, and 5% O2 at GSHV
∼20,000 h−1 and a reactor pressure of 1.2 bar at up to 10 differ-
ent temperatures for each catalyst. To reduce the time needed
for the catalytic testing of all 49 catalysts, the temperature of
the reactor was increased steadily from 473 to 773 K at a rate
of 12 K/h. Thus, the complete testing of all 49 catalysts at up
to 10 different temperatures took about 25 h.
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