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Rationale and Objectives: Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, moni-
toring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have

mainly producedmethods that are tailored to a particular type of tumor or acquisition protocol and havemostly failed to produce amethod

that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their

clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in
image quality and resolution.

Materials andMethods: A semiautomatic segmentationmethod based on the geodesic distance transformwas developed and validated

by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was
based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic andmanual

segmentations.

Results: Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of
overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where

5 indicated perfect segmentation.

Conclusions: The proposedmethod addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables

clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation.
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Q
uantification of tumor volume has become increas-

ingly important for diagnosis, staging, assessment

of therapy response, and more recently determina-

tion of eligibility for clinical trial enrollment (1–3).

Currently, assessment of tumor volume is based on two-

dimensional (2D) measurements, using standards such as the

MacDonald criteria (4) for gliomas, Herscovici criteria (5)

for meningiomas, or the RECIST standards for general

oncology (6).

These criteria allow clinicians to obtain a rough estimate of

tumor volume by sacrificing accuracy for speed. An accurate

measurement of tumor volume, however, requires a complete

segmentation of the tumor. This type of segmentation, which

can currently be performed manually, requires a tremendous

amount of time and hence is not widely used. Thus, automa-

tion of tumor segmentation represents an important clinical

need that would be invaluable for treating and monitoring pa-

tients with brain tumors. Furthermore, such automatic seg-

mentations are likely to be more reproducible and therefore

preferable over manual segmentations because of their consis-

tency, which is especially important for longitudinal tumor

monitoring.

The neuroimaging community has attempted to address

the need for automatic tumor segmentation over the past

two decades. The earliest methods included the use of fuzzy

clustering-based approaches (7,8). Direct application of such

methods leads to a large number of false-positive voxels

labeled as tumors. Later methods based on level sets and active

contours (9,10) often fail in the context of aggressive tumors

harboring significant structural complexity. Machine-

learning–based methods have been fairly successful at the
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task of tumor segmentation (11–21). However, these methods

are often tumor type specific and very sensitive to changes in

noise and acquisition protocol. Additionally, there is a

constant need for retraining with most learning-based

methods when there is a slight change in the imaging protocol

or if the scanning site changes. Furthermore, many of these

methods are based on complex algorithms that are expensive

to reimplement and difficult to integrate into existing clinical

workflows. Finally, most of these methods have been validated

in a narrow and limited research setting and not necessarily in

a clinical setting. In general, the narrow focus of previously

described techniques has prevented their widespread utiliza-

tion in the clinical arena.

In this work, we present a novel tumor segmentation tech-

nique that is semiautomatic, fast, and based on a relatively sim-

ple learning-free algorithm.We have validated our method on

three different tumor types acquired under a diverse set of

image acquisition protocols and resolutions and drawn from

studies using different preprocessing steps. Qualitative and

quantitative results present the efficacy of the proposed

method in the presence of substantial noise, scanner variation,

processing variation, and tissue (tumor) heterogeneity.

MATERIALS AND METHODS

Institutional review board approval was obtained for this study

with waiver of informed consent for retrospective review of

medical records. All imaging data came from patients treated

at the Hospital of the University of Pennsylvania. In general,

these imaging studies contained differences between cases in

terms of resolution, noise level, and pixel spacing. Overall,

our data set contained images of 24 glioblastomas, 15 menin-

giomas, and 15 metastatic brain tumors. T1 contrast-

enhanced images were available for all tumors and were

used for automatic and manual segmentations.

The data used in this project varied across cases in terms of

acquisition protocol, resolution, and pixel spacing. It was

sequentially chosen. Some of the data came from a 3.0-T

magnetic resonance (MR) imaging scanner systems (Siemens

and GEHealthcare) and some of it came from a 1.5-T systems.

Similarly, the pixel spacing varied from 0.42� 0.42 to 0.97�
0.97, and image dimensions varied between 256� 256 to 512

� 512. Slice thicknesses during acquisitions varied between

1 and 5 mm. The echo times and repetition times involved

in computing the T1 images also varied. This was a retrospec-

tive study, and we used a random sample of cases available on

the internal University of Pennsylvania Picture Archiving and

Communication System.

Thus, there was tremendous variation between cases with

respect to noise and inhomogeneity. The segmentation results

presented here are testimony to that the proposed method is

able to successfully segment these brain tumors in spite of

the considerable variation in the underlying data.

We use the adaptive geodesic algorithm described by

Gaonkar and Shu (22) to segment brain tumors. This is a

semiautomatic method that was originally devised to

segment the vertebral column on computed tomographic

images using the adaptive geodesic distance (23,24). The

method is fast, easy to use, and robust to noise and bias. A

seed region is placed by the clinician inside a tumor, and

the segmentation algorithm is initiated. The ‘‘adaptive

geodesic distance’’ is a mathematical measure that may be

computed at any voxel within the image. At a given voxel,

this measure provides a joint quantification of 1) the spatial

distance of the voxel from the seed region and 2) the

variation of the image intensity profile between the voxel

and the seed, both of which are important clues for tumor

segmentation The algorithm computes the adaptive

geodesic distance at every voxel in the image to yield an

‘‘adaptive geodesic distance transform image.’’ This

transformed image appears as a geodesic distance–weighted

inverse of the original MR image (Fig 1b) and thresholding

of this image generates the final segmentation mask. Because

of the computational efficiency of this approach, the ‘‘adap-

tive geodesic transform image’’ can be performed in a matter

of seconds. A detailed explanation of the algorithm and the

associated intuition is provided in the following.

Geodesics are the generalization of straight lines to curved

spaces. The pedagogic example of a geodesic is given in rela-

tion to the earth’s surface. If one were to travel along a straight

line from the North Pole to the South Pole, onewould have to

burrow through the earth’s core to travel. It is much easier to

make this journeyover the surface of the earth. In this case, the

distance traveled along the earth’s surface is the geodesic

distance which is considerably larger than the straight line dis-

tance between the poles.

To apply the concept of geodesic distances to image

segmentation, we can imagine the intensity profile of a 2D

image to define a surface in 3D space. The geodesic distance

between two points is the shortest path between the two

points as measured while moving along the surface.

Given an initial voxel (or set of voxels) inside the tumor,

we can compute the geodesic distance to this point (or set

of points) from every other voxel in the image. This allows

for the construction of a geodesically transformed image

whose voxel intensities are the geodesic distances from the

initially picked voxel. Geodesic segmentation then involves

segmentation of the geodesically transformed image by

thresholding.

For nonheterogeneous solid tumors such as meningiomas,

direct application of the aforementioned geodesic segmenta-

tion technique is sufficient. The geodesic distance described

by Criminisi (23) is still based on a metric that is locally depen-

dent on image gradients alone. To adapt the technique to

segment more complex and heterogeneous tumors such as

glioblastomas, we need to locally vary the metric on the basis

of prior knowledge. This leads to the adaptive geodesic dis-

tance which we used to segment all tumors in the paper.

The naive computation of the geodesic distance transform

would entail visiting every voxel and computing the geodesic

distance using a discretized form of the Euler–Lagrange equa-

tions. Mathematically, this involves solving the minimization:
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