

Contents lists available at ScienceDirect

Desalination

journal homepage: www.elsevier.com/locate/desal

Experimental investigation of dropwise condensation on hydrophobic heat exchangers. Part II: Effect of coatings and surface geometry

Jorge R. Lara *, Mark T. Holtzapple

Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, USA

ARTICLE INFO

Article history:
Received 9 March 2011
Received in revised form 11 July 2011
Accepted 12 July 2011
Available online 9 August 2011

Keywords:
Dropwise condensation
Electroless Ni-P-PTFE
Hydrophobic heat exchangers
Vertical-grooved heat exchanger sheets
Vapor-compression desalination

ABSTRACT

This is Part II of an experimental investigation of hydrophobic heat exchangers. Two plates were studied: (a) 0.127-mm-thick titanium grade 2 and (b) 0.203-mm-thick copper. Titanium plate had round-dimpled spacers. Copper had either round-dimpled spacers or round-shaped vertical-grooved spacers. Titanium was bare but copper had electroless Ni-P-PTFE hydrophobic coating. Two chemical compositions of the hydrophobic coating were employed: lead-containing and lead-free. For some studies, the coating thickness was varied from 0.635 to 127 μ m. To measure the overall heat transfer coefficient, the plates were mounted in a sealed two-chamber apparatus with condensing saturated steam on one side and forced-convective boiling liquid water on the other. The best overall heat transfer coefficient was $U = 240 \text{ kW/(m}^2 \cdot \text{°C})$ (0.203-mm-thick copper plate, round-shaped vertical grooves, 2.54- μ m-thick lead-free Ni-P-PTFE, P = 722 kPa, $T = 160 \, ^{\circ}\text{C}$, $\Delta T = 0.20 \, ^{\circ}\text{C}$, saturated liquid velocity $v_{liq} = 1.57 \, \text{m/s}$, shearing steam $v_{steam} = 0.23 \, \text{m/s}$, and flow ratio $R \approx 0.6 \, \text{kg}$ shearing steam/kg condensate).

Published by Elsevier B.V.

1. Introduction

Part I of this study [1], used a variety of heat transfer enhancement techniques such as dropwise condensation, forced convective boiling, roughening on boiling surface, boiling stones as nucleation agents, and condensation with shearing steam. Condensation on a hydrophobic surface using shearing steam and forced-convective boiling with nucleation agents produced very efficient heat transfer.

The low surface energy of titanium promotes dropwise condensation, which increases the heat flux [2]. Furthermore, titanium resists abrasion, corrosion, and fouling. Over time, the resulting overall heat transfer rate of titanium surfaces is often comparable to metals that have higher thermal conductivity.

The literature [3] suggests that compared to flat surfaces, vertical grooves deliver about 25% higher overall heat transfer coefficients. For dropwise condensation, liquids form microscopic droplets on the condensation surface, followed by droplet growth, coalescence/growth, and downflow. The thermal resistance of liquids attached to the metal surface dominates dropwise condensation [4]; rapidly shedding liquid droplets is an important factor that increases heat flux [5,6]. Round-shaped vertical grooves on the condensing surface help channel the condensing steam so it sheds quickly, which increases the heat flux [3,7,8]. This study measures the effects of shearing steam on the overall heat transfer coefficient of hydrophobic surfaces of thin

Table 1 exhibits a literature review of previous work with electroless Ni–P–PTFE hydrophobic coatings on vertical plates. Past studies focused on characterizing the coating resistance to corrosion and fouling [9–17]. The overall heat transfer coefficients reported were very low compared to the results of the present study. None of the experiments reviewed was conducted with high-pressure steam. In this review, the highest measured overall heat transfer coefficient was $U=17~\mathrm{kW/(m^2\cdot ^\circ C)}$ at comparatively large ΔT (2 to 7 °C) and low P (200 kPa) for a corrugated plate-and-frame heat exchanger coated with electroless Ni–P–PTFE.

Desalination technologies for municipal drinking water must meet NSF STD 61 certification. Lead is a common contaminant in most Ni–P–PTFE hydrophobic coatings. To overcome this problem, lead-free chemistry should be employed in systems that produce drinking water [18].

In this paper, the first study quantifies heat transfer in titanium plates with round dimples. The second study uses copper with round dimples; the thickness of the lead-containing Ni–P-PTFE coating was varied. The third study uses copper with vertical grooves with lead-containing Ni–P-PTFE coatings. The fourth study is similar to the third, but it employs lead-free Ni–P-PTFE.

2. Materials and methods

Experiments were conducted using bare 0.127-mm-thick titanium grade 2 and 0.203-mm-thick copper coated with either lead-containing or lead-free electroless Ni–P–PTFE coating.

copper plates. Electroless Ni–P–PTFE is employed as an economical and robust hydrophobic coating.

^{*} Corresponding author. E-mail address: jorge.lara@chemail.tamu.edu (J.R. Lara).

Table 1 Literature	e review	Table 1 Literature review of Ni-P-PTFE hydrophobic coatings.	ophobic coatings.											
Ref no.	ΔT (°C)	P _{sat} (kPa)	Substrate metal	Base metal Coating thickness (mm)	Coating	Coating thickness (µm)	Shear	Liquid side agitation	Nucleation sites	Liquid side Nucleation Surface geometry agitation sites (mm)	Heat transfer coefficient (kW/(m² °C))	Antifouling	Corrosion resistance	Dropwise condensation (DWC)
[8]	NR	Pool boiling 101.3 Cu SS 304	Cu SS 304	0.35	Ni-Cu-PPTFE	23	No	No	No	15×10 vertical	7	Yes	Superior to Ni-P-PTFE	NR
[6]	NR	Pool boiling 101.3 Cu SS 304 LC steel 0.35	Cu SS 304 LC steel	0.35	Ni-P-PTFE	0.254-2.54	No	No	No	15×10 vertical	NR	Inhibited formation	Yes	No
[10]	NR	Pool boiling 101.3 Cu SS 304	Cu SS 304	0.35	Ni-P-PTFE	Various	No	No	No	coupon 15×10 vertical	5	or CasO4 scale Reduced adhesion of CasO4 scale	NR	No
[11]	2-7	200	SS 316	NR	Ni-P-PTFE	NR	No	Yes (Oil)	No	Corporated plate-and frame HX	17	Yes	Yes	Yes
[12]	NR	100	SS 304	1.0	Ni-Cu-PPTFE	23	No	No	No	rtical coupon	NR	Minimized microbial adhesion by over 96-98%	Yes	No
[13]	NR	200	Cu SS 304	0.35	NI-P-PTFE	NR	No	No	No	Corrugated plate-and frame HX	17	Yes	Yes	NR
[14]	NR	100	SS 304	NR	Ni-P-PTFE	NR	No	No	No	Rotating cylinder	NR	High wear resistance	NR	NR
[15]	NR	100	SS 316	N N	Ni-P-PTFE	1.28-23	No	No O	No	Common heat exchangers	Ni-P-PTFE improved processing skim milk and tomato juice	NR	NR	NR
[16]	NR	100	Cu	0.35	Ni-Cu-PPTFE	23	No	No	No	15×10 Vertical coupon	NR	Yes	Yes	NR

2.1. Calculation of heat transfer coefficients

The plates were placed in a two-chamber apparatus described in Part I [1]. Measured overall heat transfer coefficients \boldsymbol{U} are obtained from

$$U = \left(\frac{q}{\Delta T}\right) \tag{1}$$

and

$$q = \left(mh_{fg}\right)/A \tag{2}$$

where:

U overall heat transfer coefficient (kW/m $^2 \cdot ^{\circ}$ C)

q heat flux (kW/m^2)

m condensate collected from the apparatus (kg/s)

 $h_{
m fg}$ latent heat of condensation (kJ/kg) A effective heat transfer area = 0.0645 m² temperature differential across the plate (°C)

2.2. Test surfaces

The first plate was round-dimpled 0.127-mm-thick titanium grade 2 ($k=22~\mathrm{W/(m\cdot ^\circ C)}$) with chemical composition: carbon 0.80% max., nitrogen 0.03% max., oxygen 0.25% max., iron 0.30% max., hydrogen 0.015% max., titanium balance [19]. The condensing metal surface was bare. The plates were 305 mm \times 305 mm. One hundred equally distributed round dimples (19.1-mm diameter and 3.18-mm deep separated by 25.4-mm centers) were formed on each plate. Because the mounting mechanism blocked some of the plate, the effective heat transfer area was 254 mm \times 254 mm or 0.0645 m².

The second plate was 0.203-mm-thick copper ($k = 400 \text{ W/(m} \cdot ^{\circ}\text{C})$) with round dimples. Both plate surfaces were modified with lead-containing Ni–P–PTFE hydrophobic coatings of different thicknesses.

The third plate was 0.203-mm-thick copper ($k = 400 \text{ W/(m} \cdot ^{\circ}\text{C})$) with round-shaped vertical grooves. The plates were 305 mm \times 305 mm. Twenty-seven equally distributed round grooves (8-mm diameter and 3.18-mm deep) were formed on each plate. The effective heat transfer area was 254 mm \times 254 mm or 0.0645 m². Both plate surfaces were modified with a 0.635- μ m-thick lead-containing Ni-P-PTFE hydrophobic coating by Micro Plating, Inc. (Erie, PA).

In this study, two hydrophobic coatings were used; one uses lead acetate as stabilizer in the electroless bath and the other is lead-free. Table 2 shows the chemical composition of lead-containing Ni-P-PTFE [17] compared to lead-free Ni-P-PTFE [18].

The fourth plate was 0.203-mm-thick copper with round-shaped vertical grooves that was coated with lead-free 2.54-µm-thick Ni-P-PTFE.

Table 2Bath composition for electroless Ni–P–PTFE hydrophobic coating.

Lead-containing Ni-P-PTFE [17]	Lead-free Ni-P-PTFE [18]
NiSO ₄ · 6H ₂ O 25 g/L	NiSO ₄ · 6H ₂ O 30 g/L
$NaH_2PO_2 \cdot H_2O 30 g/L$	$NaH_2PO_2 \cdot H_2O 30 g/L$
^a Na ₃ C ₆ H ₅ O ₇ ⋅ 2H ₂ O 18 g/L	Lactic acid 25 mL/L
Sodium acetate 18 g/L	Sodium acetate 10 g/L
(CH ₂) CS 1 ppm	Accelerator 4 g/L
Lead acetate (stabilizer) 3 ppm	KIO ₃ (stabilizer) 5 ppm
PTFE (60 wt.%) 10 mL/L	PTFE (60 wt.%) 4-50 mL/L
C ₂₀ H ₂₀ F ₂₃ N ₂ O ₄ I (FC-4) 0.4 g/L	
pH 4.8	pH 4.6-5
T (°C) 88	T (°C) 90 ± 2

a Sodium citrate.

Download English Version:

https://daneshyari.com/en/article/624639

Download Persian Version:

https://daneshyari.com/article/624639

Daneshyari.com