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The single-objective optimization study by Satyanarayana and Bhattacharya (2003) [1] on removal of volatile
organics from aqueous solution by single stage pervaporation without recycling has been extended by
treating it as a multi-objective optimization problem. The various costs of the process namely-initial capital
cost, feed pumping cost, vacuum and condensation cost and membrane replacement cost constitute the
objective functions. The present work attempts to explore the pervaporation process economics by employing
artificial intelligence method of non-dominated sorting genetic algorithm-II (NSGA-II). The cost of feed
pumping offers significant trade-off with the costs of initial capital or vacuum and condensation. Although
to a lesser extent, the trade-offs are also available between the costs of initial capital and vacuum and
condensation. The results from this study clearly establish that the major costs for removal of volatile organics
from water are feed pumping, initial capital, and vacuum and condensation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Volatile organic compounds (VOCs) like aldehydes, ketones and
hydrocarbons, which exhibit a vapor pressure of about 1 mm of Hg at
25 °C, can cause global warming, leukemia and respiratory problems.
Huge expenses are incurred globally for waste water treatment.
Removal of VOCs from waste water is the main and costly process in
the waste water treatment. A number of technologies [2–6] have been
tried with an objective to reduce the cost of this process. Each method
has shown its advantages and disadvantages [4] and there remains a
definite need for a cost-effective removal of VOCs from waste water.
To achieve this object, we have tried to analyze the cost of removal of
VOCs from water by using an advanced separation process like
pervaporation in this study.

Pervaporation is a membrane based separation process in which
feed solution is brought in contact with one side of the membrane and
permeate is removed from the other side of the membrane by
applying a pressure lower than the saturation vapor pressures of
the components. Pervaporation is not only a cleaning technology but
also a clean technology, with added advantage of lesser treatment
cost for separation of multi-component VOCs compared to that of a
binary mixture [1].

Some of the reported works on removal of VOCs from water
explored new membrane materials and surface modifications of

membranes [7], module designs [8], hybridizations [9] and concen-
tration polarization [10]. A comprehensive review on removal of VOCs
by pervaporation process is done by Peng et al. [11]. However, not
much work has been reported on optimization and cost analysis.
Therefore, the main objective of the present study was to perform a
thorough cost analysis on removal of VOCs from multi-component
aqueous solutions using multi-objective optimization.

Earlier a pervaporation model was developed for separation of
VOCs from waste water and the optimum process conditions were
determined for separation of a binary mixture [12]. The same model
was extended [1] for multi-component aqueous solutions and the
minimization of treatment cost for removal of toluene from a four
component aqueous mixture was studied.

Carrying out a single objective optimization of the treatment cost
by assigning fixed unit prices (preferences or weighting factors) [1] to
various costs that contribute to it would restrict the applicability of
solution to a specific case. In addition, any set of unit prices assigned to
various costs might miss some of the solutions especially when non-
convexity of the problem gives rise to duality gap [13–15]. Further, the
e-constraint method has the disadvantage that the solution obtained
is specific to the objective function chosen and the limits set to the
constraints that are obtained by converting the remaining objectives
of the problem. Hence one may solve the problem as multi-objective
optimization [16]. However, a multi-objective optimization problem
is often set up when the objectives are not easily comparable or non-
commensurate. An excellent review by Bhaskar et al. [17] presents
several of multi-objective optimization problems set up in the past in
core chemical engineering. Several advantages are offered by the
NSGA-II algorithm [13]. Therefore, in the present study the NSGA-II
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algorithm is employed for cost analysis. The previously available
process and cost models useful for study are outlined in Appendix 1
and Appendix 2 respectively [1].

Treatment cost is mainly composed of the costs of: 1. capital
depreciation; 2. maintenance and labor; 3. membrane replacement;
and 4. energy. Further, it is clear from the cost model that the energy
cost consists of vacuum and condensation cost and feed pumping cost.

Prima facie it appears that the initial capital cost and energy
costs can be further split in to different costs and a multi-objective
optimization of higher dimension can be carried out. But to reduce
the complexity of the problem and to make it a physically meaningful
and comprehensive analysis, the four major costs (initial capital
cost, membrane replacement cost, vacuum and condensation cost,
and feed pumping cost) have been chosen for minimization. For
example, capital depreciation cost and maintenance and labor costs
can bemerged in to one single cost for following reasons. The trade-offs
available for other costs are not so attractive when these two are con-
sidered as independent costs. The cost model shows fixed percent-
ages (weighting factors) were given to above two costs based on
the initial capital investment. Another example is the vacuum and
condensation and the feed pumping costs are shown as two different
objectives. Here it may appear that these two costs can be merged
and taken as a single cost. But it would be more meaningful to treat
themasdifferent costs as bothof themhave emergedas significant costs
of same order.

In addition, these four costs are conflicting in decision variable space.
Inotherwords, the cardinality of thePareto optimal set is not one,which
is the fundamental requirement to arrive at the non-dominated optimal
solution set of the multi-objective optimization problem [16]. Hence,
the objective of the present study is to carry out the multi-objective
optimization or vector optimization for removal of VOCs from waste
water by pervaporation while taking initial capital cost, membrane
replacementcost, vacuumand condensation cost and feedpumping cost
as objectives.

2. Theory and numerical simulation

The basic concept of the multi-objective optimization is to find a
set of solutions called non-dominated set such that none of the
solutions dominates any other solution (as there is no single solution
that is the best with respect to all the objectives in the entire search
space). In other words, as one moves from one point to the other of
the Pareto optimal solutions in the objective function space, at least
one of the objectives must be improving with simultaneous
deterioration of at least one of the other objectives. These are also
called the Pareto optimal solutions or Pareto optimal set. If the Pareto
optimal set is such that if any other solution in the entire search space
is dominated by at least one solution in the set then it is called the
global Pareto optimal set.

NSGA-II is employed to obtain the trade-off solutions of the present
problem. NSGA-II is based on the principle of natural evolution. A set of
(given number of) random population is created initially. Each
population is a string consisting of one value each of all the decision
variables. The initial population is chosen randomly from the entire
search space. In NSGA-II, the spread of the solutions is encouraged by
assigning highest fitness to the most isolated solutions and lowest
fitness to the most crowded solution.

NSGA-II algorithm is briefly outlined as follows: a given number of
populations are generated randomly in the decision variable space.
The population is divided in to several arbitrary number of non-
dominating fronts based on the objective function values. Each of
these fronts is assigned a common fitness value with the highest
non-dominant set being given highest fitness value and the least
dominating front being given the lowest, progressively. Then the
fitness of each member of a given non-dominant set is estimated by
dividing the fitness value of the set by the niche count of the member.

The niche count of a member is a measure of number of solutions
in its vicinity. The more crowded a particular member is the more
will be its niche count and hence the lesser will be its fitness in a given
front. Further, the most isolated member of the most dominant set
is assigned with highest fitness and the most crowded solution in the
lowest front is assigned the least fitness. This helps the spread of
solutions in the Pareto set. Then the reproduction, cross over and
mutation are carried out to produce evolved population. A set number
of such evolutions are carried out to get the final solution. The detail
description of NSGA-II algorithm is given by Deb [16].

Hence the four objective optimization problems can be described
as follows.

min Initial capital cost (q, Re, l, p,xTol,xTCE,xMC)
min Membrane replacement cost(q, Re, l, p,xTol,xTCE,xMC)
min Vacuum and condensation cost (q, Re, l, p,xTol,xTCE,xMC)
min Feed pumping cost (q, Re, l, p, xTol,xTCE,xMC)
s.t.

2:77 × 10−3
b q b 5:77 × 10−3

20 b Re b 2100
5 × 10−6 b l b 10−4

0:2 b p b 4:0
2 × 10−6 b xTol b 9:8 × 10−5

2 × 10−6 b xTCE b 9:7 × 10−5

2 × 10−6 b xMC b 4:01 × 10−3

The solutions are obtained for 90% removal of toluene present in
the feed solution. The trade-off solution obtained by genetic
algorithms for a given problem is critical to the genetic parameters
chosen. Further, a priori knowledge of the genetic parameters to be
used in a given problem is impossible. However, the genetic pa-
rametersmay be fixed by keeping in view of the two basic tasks [16] of
multi-objective optimization. One task is to obtain the optimal solu-
tions as close to the true Pareto-optimal region as possible and the
other task is to maintain the spread of solutions with least scatter
possible. For the present case, it is found that the number of gen-
erations, mutation and cross over probabilities are the important
genetic parameters that affected the performance of the NSGA II.
The values of genetic parameters chosen for present problem are
given in Table 1.

Asmentioned in the introduction the objective of the present work
is to carry out the multi-objective optimization or vector optimization
for removal of VOCs from waste water in a single stage pervapora-
tion without recycling of permeate by extending the single-objective
optimization study [1]. Therefore, process and cost models as well
as the properties used for simulations are available elsewhere [1].
However, for easy understanding and to maintain the continuity
some of the important equations used for simulation are reproduced
below.

Overall continuity equation

1
2π

dq
dz

= − ∑
3

i=1

LP;i;m
ðEi+1Þ

ðxiHi−pyi = ρÞ
lnð1+ l = riÞ

−
LP;w
ρ

ðpo
w−pywÞ

lnð1+l= riÞ
ð1Þ

Table 1
GA parameters chosen for optimization.

Maximum number of generations 500
Maximum population size 80
Probability of cross over 0.6
Probability of mutation 0.06
Random seed 0.0625
Distribution index for cross over 5
Distribution index for mutation 80
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