


Available online at www.sciencedirect.com

### **ScienceDirect**





## Can a nickel—titanium memory-shape device serve as a substitute for the stapler in gastrointestinal anastomosis? A systematic review and meta-analysis



Ning-Ning Li, MD, Wen-Tao Zhao, MD, b, and Xiao-Ting Wu, MDc

#### ARTICLE INFO

Article history:
Received 9 August 2015
Received in revised form
20 September 2015
Accepted 8 October 2015
Available online 23 October 2015

Keywords:
Meta-analysis
Nickel—titanium compression anastomosis clip/ring
CAC
CAR

Anastomosis Systematic review

Stapler

#### ABSTRACT

Background: Recently, a nickel—titanium (NiTi) memory-shape device has been successfully used in gastrointestinal anastomosis. The aim of this study was to investigate the feasibility and safety of the device.

Methods: Four databases, reference lists, and the World Health Organization International Clinical Trials Registry Platform were systematically searched for randomized controlled trials assessing the clinical efficacy of a NiTi memory-shape device compared with that of a stapler in gastrointestinal or colorectal anastomosis.

Results: Seven randomized controlled trials regarding the use of compression anastomosis clips (CACs) were enrolled for meta-analysis. The use of CACs was associated with a significant reduction in hospital duration (mean =-0.88 d; 95% confidence interval [CI], -1.38 to -0.38), the time to flatus (mean =-0.36 d; 95% CI, -0.08 to -0.04), and the start of oral intake (mean =-0.45 d; 95% CI, -0.83 to -0.06), as well as a nonsignificant change in postoperative complications and mortality. These clinical outcomes did not significantly change with the use of compression anastomosis rings.

Conclusions: Colonic anastomosis with a CAC is likely to reduce hospital duration, time to flatus, and the start of oral intake without influencing mortality or postoperative complications and may be a safe and preferable choice in colonic anastomosis. Further well-designed trials should be performed to determine the safety and efficacy of the newly developed compression anastomosis ring in both ileocolic and colorectal anastomosis.

© 2016 Elsevier Inc. All rights reserved.

#### 1. Introduction

The physical apposition of the bowel is achieved either by the placement of hand-sewn sutures or by the mechanical

application of metal staples. Currently, the overwhelming majority of surgeons perform gastrointestinal anastomosis using surgical staplers rather than hand sutures because of their quick application and reduced rate of anastomotic

<sup>&</sup>lt;sup>a</sup> Department of General Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

<sup>&</sup>lt;sup>b</sup> Department of Colorectal Surgery, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China

<sup>&</sup>lt;sup>c</sup> Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China

<sup>\*</sup> Corresponding author. Department of Colorectal Surgery, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China. Tel.: +86 020 3658 8719; fax: +86 020 3659 0540.

| Table 1 — Inclureview.                  | sion and exclusion c                                                                                                                                                                                | iteria in the                                                                         |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Study<br>characteristics                | Inclusion criteria                                                                                                                                                                                  | Exclusion criteria                                                                    |
| Population                              | Adult<br>Undergo digestive<br>surgery                                                                                                                                                               | Children<br>Animal data                                                               |
| Study type                              | RCTs                                                                                                                                                                                                | Reviews/editorials/<br>case reports<br>Cohort/cross-over/<br>nonrandomized<br>studies |
| Intervention<br>Outcomes of<br>interest | CAC/CAR versus stapler<br>At least one of the<br>following outcomes:<br>Mortality<br>Length of hospital stay<br>Gas started<br>Start of oral intake<br>Costs<br>Duration of surgery<br>Bowl started | BAR/AKA/suture                                                                        |

leakage [1,2]. Although there is a significant body of literature supporting the use of surgical staplers, they suffer from several inherent limitations. They are limited by their potential for incomplete sealing due to their full-thickness insertion and potential to induce inflammation via the introduction of foreign material [3]. These disadvantages result in complications, as shown by the consistently reported rate of anastomotic leakage after colorectal resection ranging from 2.9%—15.3% [4], whereas the incidence of stenosis or stricture varies from 1.2%—4.2% overall [5]. In addition, the penetration of the bowel by staplers is associated with increased infections of the wound and

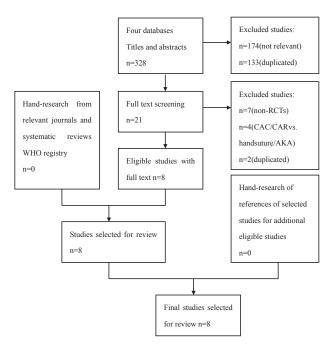



Fig. 1 – Summary of study identification and selection. WHO = World Health Organization.

| Author Yea    |           |                    |            |                                                               |                                        |     |              |          |                                 |                            |
|---------------|-----------|--------------------|------------|---------------------------------------------------------------|----------------------------------------|-----|--------------|----------|---------------------------------|----------------------------|
|               | ar Count  | try Sample<br>size | Study type | Year Country Sample Study type Anastomosis site and type size | Type of operation                      | Det | Devices      | Dropouts | Dropouts Follow up<br>time (mo) | Time of<br>expel (d)       |
| Nudelman 200  | )2 Israel | 1 20               | RCT        | Colonic, side to side                                         | Colonic cancer                         | CAC | CAC Stapling | 0        | 9                               | 5-7                        |
| Nudelman 2004 | )4 Israel | 1 10               | RCT        | Colonic, side to side                                         | Laparoscopic colectomy                 | CAC | Stapling     | 0        | 9                               | 5-7                        |
| Nudelman 2005 | )5 Israel | 91 60              | RCT        | Colonic, side to side                                         | Elective colonic                       | CAC | Stapling     | 0        | 9                               | 7-10                       |
| Jiang 2006    | of China  | a 40               | RCT        | Jejunum-jejunum, side to side                                 | Total gastrectomy for gastric tumor    | CAC | Stapling     | 0        | 1–6                             | $11 \pm 2.5 \; (9{-}16)$   |
| Wang 2008     | 38 China  | a 40               | RCT        | Gastroenterostomy, side to side                               | Gastrectomy for gastric tumor          | CAC | Stapling     | 0        | 1–3                             | 10-30                      |
| Liu 2008      | 08 China  | a 66               | RCT        | Gastroenterostomy/                                            | Gastrectomy for gastric tumor or ulcer | CAC | Stapling     | 0        | 6 1                             | $15.1 \pm 6.04 \; (5-29)$  |
|               |           |                    |            | enteroenterostomy, side-to-side                               |                                        |     |              |          |                                 |                            |
| Hua 2011      | 11 China  | a 51               | RCT        | Gastroenterostomy, side to side                               | Open abdominal surgery                 | CAC | CAC Stapling | 0        | Н                               | $11 \pm 2.3 \ (9{-}15)$    |
| Li 2011       | 11 China  | а 60               | RCT        | Colorectal end to end                                         | Colectomy and anterior resection       | CAR | CAR Stapling | 0        | ന                               | $11.3 \pm 8.9 \; (7{-}16)$ |
|               |           |                    |            |                                                               |                                        |     | (29 mm)      |          |                                 |                            |

### Download English Version:

# https://daneshyari.com/en/article/6253278

Download Persian Version:

https://daneshyari.com/article/6253278

<u>Daneshyari.com</u>