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h  i g  h  l  i  g  h  t  s

• Multi-electrode  neural  recording  in  PFC  of  free-moving  rats  during  a working  memory  task.
• Functional  connectivity  analysis  in  PFC  spike  networks  via  maximum  likelihood  estimation.
• A  feature  network  was constructed  by  connections  among  active  neurons  in  neural  assembly.
• Connection  strength  and  global  efficiency  in  the  PFC  network  increased  in  correct  trials.
• Characteristics  in  PFC  spike  networks  can  be highlighted  in  the  feature  space.
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a  b  s  t  r  a  c  t

Working  memory  refers  to  a  brain  system  that  provides  temporary  storage  to manipulate  information
for  complex  cognitive  tasks.  As  the brain  is  a more  complex,  dynamic  and  interwoven  network  of connec-
tions  and  interactions,  the  questions  raised  here:  how  to investigate  the  mechanism  of  working  memory
from  the  view  of  functional  connectivity  in  brain  network?  How  to present  most  characteristic  features
of functional  connectivity  in  a low-dimensional  network?  To address  these  questions,  we recorded  the
spike  trains  in  prefrontal  cortex  with  multi-electrodes  when  rats  performed  a  working  memory  task  in
Y-maze.  The  functional  connectivity  matrix  among  spike  trains  was  calculated  via  maximum  likelihood
estimation  (MLE).  The  average  connectivity  value  Cc, mean  of  the  matrix,  was  calculated  and  used  to
describe  connectivity  strength  quantitatively.  The  spike  network  was  constructed  by the  functional  con-
nectivity  matrix.  The  information  transfer  efficiency  Eglob was calculated  and  used  to  present  the  features
of  the  network.  In  order  to establish  a low-dimensional  spike  network,  the  active  neurons  with  higher
firing  rates  than  average  rate  were  selected  based  on  sparse  coding.  The  results  show  that  the  connec-
tivity  Cc and  the  network  transfer  efficiency  Eglob vaired  with  time  during  the  task.  The  maximum  values
of  Cc and Eglob were  prior  to the  working  memory  behavior  reference  point.  Comparing  with  the  results
in  the  original  network,  the  feature  network  could  present  more  characteristic  features  of  functional
connectivity.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Working memory refers to a limited-capacity storage sys-
tem, which provides temporary storage and manipulation of the
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information in short periods of time and relates to many cog-
nitive operations [1]. Ethology studies have shown that medial
prefrontal cortex (mPFC) plays a critical role in working mem-
ory and lesions of rat mPFC impairs working memory performance
[2,3].

Studying on neural activity has long been an important tool to
study the spatiotemporal organization of information processing
circuits in brain functions [4–9]. Recently, studies on the func-
tional networks in brain have attracted increasingly widespread
attention. By studying the dynamics functional networks thereby
enabled, we  may gain insight into the nature of brain as the embod-
iment of the mind and understand mechanism of cognitive function
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better. Furthermore, functional connectivity among neural signals
has been an effective tool to unveil the mechanism of information
processing in cognitive functions [10–12].

For the past few years, researchers primarily dedicated to study
functional networks in working memory using macro-scale neu-
ral signals (EEG and fMRI etc.) [13–15]. The speedy development
of multi-channel microelectrode recording enables researchers to
record micro-scale neural signals (spikes and local field poten-
tials (LFP)) for the deep understanding of working memory [16,17].
Spikes are the temporal sequence of action potentials generated by
neurons and considered to be neural responses to external stimuli
[18]. Since spikes have excellent spatial and temporal resolution
[19], studies on functional networks based on the simultaneous
spiking activity of neurons allow us to understand the neural mech-
anism in working memory better.

The functional connectivity among neural signals can be esti-
mated via a great diversity of methods. Studies have shown that
Granger causality is one of the most effective methods for esti-
mating the functional connectivity among neural signals. However,
Granger causality is applicable for continuous-valued signals (LFP,
EEG etc.) [20–22], which it cannot be directly used in point-process
time series (e.g., spikes) [18]. Considering the discrete characteris-
tics of spikes, a method of maximum likelihood estimation (MLE)
was provided based on the generalized linear model (GLM) and
applied to deal with spikes recorded from primary motor cortex of
monkey [23]. Afterwards, the MLE  method was improved and used
to deal with ensemble spikes recorded from primary motor cortex
of cat [24]. Considering neurons as nodes and connection strengths
as links, further approaches were used to quantitatively measure
the functional connectivity characteristics in the networks [25–27].
These measures have been widely used to evaluate the function
connectivity in cognitive task or range of neurological disorders
[28–30], using neural signals different scales [31,32].

Several decades ago, Hebb induced the classical neural assembly
theory, suggesting that active neural assemblies specialized par-
ticipates in information processing in the brain [33]. In the years
followed, numerous evidences indicated that neural systems may
be employing sparse approximations to represent cognitive infor-
mation [34]. Experimental studies also demonstrated that neural
activity in cortex is sparse and a small portion of responsive neu-
rons primarily encode information rather than a large population
of silent neurons [35,36]. These mean that, in many cases, not all
the neurons recorded are ‘important’ for the underlying mecha-
nism of brain function. Therefore, it is necessary to extract the
feature information from original data and construct a feature data
representation to enhance the characteristics in neural networks.
To address this question, some methods were proposed for fea-
ture extraction, such as principal component analysis (PCA) and
nonnegative matrix factorization (NMF) [37,38]. However, how to
identify ‘important’ neurons from all the neurons recorded is a key
for feature extraction. Sakurai et al. [39] introduced the coding by
neural-assembly in PFC when animals were performing cognitive
tasks and showed that some active neurons encode the primary
information. The results indicated that these active neurons may
be the ‘important’ neurons, which are more important components
than the silent ones in cognitive function.

Therefore, in the present study, we extracted information
from active neurons (fire at higher rates than average) and con-
structed feature datasets. The functional connectivity in both
feature and original space were assessed via MLE. Furthermore, the
connection strength and information transfer efficiency in spike
network in feature space and original space were compared to
show the dynamic changes in functional connectivity during the
working memory task and investigate whether the characteris-
tics in spike network can be effectively described in the feature
space.

2. Materials and methods

All surgical and experimental procedures conformed to the
Guide for the Care and Use of Laboratory Animals and were
approved by the Tianjin Medical University Animal Care and Use
Committee.

2.1. Delayed-alternation task in Y-maze

Male Sprague–Dawley rats (12 weeks, 300–350 g) were used
for the experiments. Before training sessions, rats were raised in
a climate and humidity controlled room on a 12-h light-dark cycle
with free access to water and limit access to food to maintain body
weights at 85% of normal body weight. After 2 days, rats were placed
in Y-maze about 30 min  per day to adapt to the environment over
2 consecutive days. After all above, rats were trained on a delayed-
alternation task in Y-maze. As shown in Fig. 1A, A was assumed to
be starting point while B and C were ending points. Food cups were
placed at the point B and C. The rats were given two training ses-
sions (10 trials per session) per day. Each trial consisted of a sample
run and a choice run. On the sample run, the rats were allowed to go
either left or right to get food reward. After consuming the reward,
the rat voluntarily went back to the start point. After 5 s delay, the
rats have a choice run. The rats were rewarded for choosing the pre-
viously unvisited arm. After a trial, the rats were allowed to return
and start next trial. Once rats’ performances were stable at ∼80%
correct on 2 consecutive days, the electrophysiological recordings
were initiated.

2.2. Electrophysiological recordings and data preprocessing

Once rats reached the acquisition criterion in the task, they
will undergo a chronic implant surgery. 16-channel microelectrode
arrays (nickel-chromium, <1 M�)  were implanted into mPFC of rats
when they were anesthetized by chloral hydrate (350 mg/kg). The
coordinates for mPFC were determined according to the rat brain in
stereotaxic coordinates (Fig. 1B; AP: 2.5–4.5 mm;  ML: 0.2–1.0 mm;
DL: 2.5–3.5 mm).  After recovery, neural activity was recorded when
rats performed the delayed-alternation task in Y-maze.

The wideband signals were recorded during the working mem-
ory task with Cerebus Data Acquisition System (Cyberkinetics,
USA). Spikes (high-pass filter: 500–7500 Hz) exceeding a pre-
set voltage threshold were sampled at 30 kHz and were stored
with time stamps in the Neural Signal Processor. The spikes
recorded were the simultaneous electrical activity of several neu-
rons near the tip of the microelectrode, therefore spike-sorting
was performed using offline sorter (Plexon, Texas, USA) to clas-
sify single-unit activity (Fig. 2A). Single neurons with a signal-to-
noise of <3.0 and a very low baseline firing rate (<30 spikes/min)
were discarded. Time stamps were recorded when rats arrived at
the infrared sensor in Y-maze and defined as the ‘reference point’
(RP) in this study.

2.3. Data analysis and statistics

We recorded neural activity from rat mPFC when they per-
formed the working memory task in Y-maze. In the present paper,
we described 60 trials from four rats: 15 trials (19 neurons) from
rat 1, 15 trials (23 neurons) from rat 2, 15 trials (25 neurons) from
rat 3, and 15 trials (20 neurons) from rat 4. Data in the text and
figures are expressed as means ± SEM. Statistical differences were
evaluated by using Student’s t-test/Welch–Satterthwaite t-test. P-
value was  considered statistically significant as follows: *P < 0.05,
**P < 0.01, ***P < 0.001.
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