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h  i g  h  l  i  g  h  t  s

� We  propose  using  the  affinity  propagation  clustering  for  detecting  multiple  shoals.
� A  soft  temporal  constraint  is  included  in  order  to detect  shoal  fusion  and  fission.
� We  explore  how  affinity  propagation  performs  on agent-based  simulated  shoals.
� We  compare  affinity  propagation  clustering  to human  clustering  of  the same  data.
� Affinity  propagation  is  an  appealing  approach  for  detecting  shoal  dynamics.

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 31 August 2012
Received in revised form
16 November 2012
Accepted 20 November 2012
Available online 4 December 2012

Keywords:
Animal group membership
Shoal membership
Shoal fusion and fission
Affinity propagation clustering
Soft temporal constraint
Human clustering validation

a  b  s  t  r  a  c  t

We  propose  using  the  affinity  propagation  (AP)  clustering  algorithm  for  detecting  multiple  disjoint  shoals,
and we  present  an  extension  of  AP,  denoted  by STAP,  that  can  be applied  to  shoals  that  fusion  and fission
across  time.  STAP  incorporates  into  AP  a soft  temporal  constraint  that  takes  cluster  dynamics  into  account,
encouraging  partitions  obtained  at  successive  time  steps  to  be consistent  with each  other.  We  explore  how
STAP performs  under  different  settings  of  its  parameters  (strength  of  the  temporal  constraint,  preferences,
and distance  metric)  by  applying  the  algorithm  to simulated  sequences  of  collective  coordinated  motion.
We study  the  validity  of STAP  by  comparing  its results  to  partitioning  of  the  same  data  obtained  from
human  observers  in  a controlled  experiment.  We  observe  that, under  specific  circumstances,  AP yields
partitions  that  agree  quite  closely  with  the  ones  made  by  human  observers.  We conclude  that  using
the  STAP  algorithm  with  appropriate  parameter  settings  is  an  appealing  approach  for  detecting  shoal
fusion–fission  dynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Determining group membership is a main concern of scientists
studying animal collective behavior. Despite the growing body of
literature devoted to the subject, criteria for determining shoal
membership are still a matter of discussion. In particular, there is
a need for methods that determine which fish are in a shoal and
which are not. A common criterion to determine members of a shoal
is based on body length based distances: animals within a criterion
distance are considered to belong to the same shoal or group (in fish,
four body lengths [1,2]; in dolphins, 100 m [3]). However, given the
poor empirical evidence for validating that criterion, determining
the limits of the shoal by eye is also common [4].
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In this article, we  follow the definition of a shoal given by [5],
which permits quantification of this behavior, and is based on an
earlier definition by [2].  According to [5, p. 614], a shoal is a group
of individuals “presenting significant degree of cohesion, limited in
a relatively small portion of space, a consequence of social interac-
tion between these individuals”. However, defining a shoal, which
is a particular kind of social interaction, as being a consequence of
social interaction itself, is a circular definition; thus, “definitions
based on the geometrical or statistical distributions of individuals
(. . .)  are useful in the study of aggregation behaviours because
they are operationally objective and are independent of such
behaviours” [6, p. 487]. Therefore, an appropriate way  to define
shoals is to provide an objective method to quantify cohesion, while
characterizing them as consequences of social interaction seems
unnecessary.

Our current work focuses on cohesion, or aggregation, and
seeks to determine how to objectively characterize shoals. When
synchronisation of displacements is measured, it is typically
assumed that there exists a single group or shoal; however, when
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several shoals are detected they can have different degrees of
synchronisation and intra shoal aggregation. In such cases, it
is more sensible to measure synchronisation and aggregation
for each shoal separately. Therefore, a necessary first step in
the analysis of collective motion is that of determining how
many subgroups exist, and which individuals belong to each
group.

When studying aggregation in groups of fish, three statistical
methods have been proposed for determining which individuals
belong to a shoal and which are outsiders. Such methods aim to
detect a main cluster or shoal, and exclude outliers. These meth-
ods are based on momentary mean distances among individuals
(Miller and Gerlai’s 2008 method, MG08 for short, [7]), on tra-
jectories of nearest neighbor distances during a session (Miller
and Gerlai’s 2011 method, MG11 for short, [8]), and on momen-
tary nearest neighbor distances (Quera, Beltran and Dolado’s 2011
method, QBD11 for short, [9]). When the MG08 is applied over
several successive time units, the assignment of individuals to the
main cluster tends to be unstable in certain cases: as individuals
move, some of them may  be considered members of the shoal
at a certain time unit and excluded from it at the next, while for
a human observer no substantial differences in membership can
be distinguished. MG11 and QBD11, on the other hand, provide
more stable results across time units, though MG11 can only be
applied once all the data from a session have been gathered. None
of these methods aims to segment a group into more than two  dis-
joint subgroups or shoals. MG11 does segment a group into more
than two subgroups, but the subgroups are not necessarily dis-
joint. A comparative summary of the three methods is shown in
Table 1.

Animal group membership can be highly variable, as groups fuse
and fission [10]. Regarding the analysis of animal aggregations,
it is accepted that determining objectively the number of groups
present and which individuals are members of each group is a very
difficult task [6]; consequently, a quantitative method is needed to
detect multiple groups. Moreover, in order to determine the valid-
ity of such a method, its outcome should be compared to estimates
made by human observers, which would “ensure consistency and
objectivity across time and among different observers and studies”
[6, p. 483].

In this article we propose using the affinity propagation (AP)
clustering algorithm [11–14] for detecting multiple disjoint shoals.
We explore how AP performs under a variety of circumstances,
and we compare its output to partitioning results obtained from
human observers asked to perform the same task in a controlled
experiment. In addition, we propose a variant of the algorithm
(denoted by STAP) that takes into account cluster dynamics so
that the results are temporally consistent: that is, STAP can yield
partitions at time t that are related to those obtained at time
t − 1. This is in contrast to performing standard AP on each
time step, yielding independent and not necessarily consistent,
results. Unlike MG11, AP can be applied momentarily and not post
hoc.

2. Affinity propagation

Cluster analysis, or clustering, is the task of partitioning data
into disjoint subsets or groups. When groups also need to be asso-
ciated with a label, the task is known as classification. There exist
a wide variety of clustering and classification techniques, such as
hierarchical cluster analysis, nearest neighbor classification, and
techniques based on swarm intelligence algorithms (e.g., [15,16]).
An iterative, kth nearest neighbor, hierarchical cluster analysis for
detecting shoals was been proposed in [6]. However, results from
hierarchical cluster analysis require a cutoff criteria in order to
determine the actual clusters. k-Means clustering has been pro-
posed for detecting clusters in animal social networks [17], but,
similarly to many other methods, it requires specifying the number
of clusters a priori. In comparison, affinity propagation partitions
data into clusters without requiring a cutoff criteria or knowing
the number of clusters to find. However, like other data cluster-
ing methods, AP requires that some parameters must be specified
by the users; in this article we explore systematically how those
parameters affect AP performance. Affinity propagation was devel-
oped by Delbert Dueck and Brendan J. Frey and has become a
popular method in many research fields such as machine learn-
ing, bioinformatics, social networks analysis, computer vision, and
neuroscience [14, pp. 6–7]. In this article we  present an overview
of AP; for details, we  refer the reader to [11–14,18].

The affinity propagation algorithm takes as input a matrix of
pairwise similarities for n points (sij, i = 1 . . . n, j = 1 . . . n). In our
case, similarities are defined between individual fish represented
by their spatial coordinates. The algorithm partitions the points
into clusters so that each cluster contains exactly one prototypical
data point, known as the exemplar, to which the other points in the
cluster are associated. The similarity sij is a measure of how suitable
point j is to serve as the exemplar for point i; the similarity between
a point and itself, sjj, is known as the preference,  and is a measure
of the a priori suitability of point j is to serve as an exemplar.

The algorithm operates by an iterative message-passing mech-
anism; each data point can be thought of as a node in a network.
Nodes send and receive messages to and from other nodes along
the edges of the network. Each node i transmits its responsibility
(�ij) for recognizing other nodes j as candidate exemplars, and its
availability (˛ij) to be a candidate exemplar for other nodes and for
itself (self-availability, ˛jj). Respectively, these messages reflect the
accumulated evidence “for how well-suited point j is to serve as
the exemplar for point i, taking into account other potential exem-
plars for point i” and “for how appropriate it would be for point i to
choose point j as its exemplar, taking into account the support from
other points that point j should be an exemplar” [13, p. 972]. Mes-
sage passing is an iterative process in which responsibilities and
availabilities are updated as functions of similarities and previous
responsibilities and availabilities. After a certain number of itera-
tions the process typically converges, and the messages no longer
change between iterations. At that point, the messages can be used
to compute the subset of points that are the exemplars, as well as

Table 1
Comparative summary of existing methods for detecting one single shoal vs. outliers. MG08, [7]; MG11, [8];  QBD11, [9].

Methods

MG08 MG11 QBD11

Measure Mean inter-individual distances kth nearest neighbor distances kth nearest neighbor distances
Analysis Momentary Post hoc Momentary
Segmentation criterion Arbitrary (square root of global mean distance) Distribution-based and arbitrary (percentile) Arbitrary (square root of global

mean distance, and percentile)
Result Main cluster/outliers Main clusters/“k-type excursions” Main cluster/outliers
Size  of main cluster Liberal More conservative as total group size increases Conservative
Stability of segmentations Fairly unstable Fairly stable Moderately stable
Computational cost Low High Low
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