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The sense of time is foundational for perception and action, yet

it frequently departs significantly from physical time. In the

paper we review recent progress on temporal contextual

effects, multisensory temporal integration, temporal

recalibration, and related computational models. We suggest

that subjective time arises from minimizing prediction errors

and adaptive recalibration, which can be unified in the

framework of predictive coding, a framework rooted in

Helmholtz’s ‘perception as inference’.
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Introduction
The sense of time, unlike other senses, is not generated

by a specific sensory organ. Rather, all events that stimu-

late the brain, regardless of sensory modality, contain

temporal cues. Because of heterogeneous processing of

sensory events, subjective time may differ significantly

for a given duration across modalities. For example, an

auditory event is often perceived longer than a visual

event of the same physical interval [1]. Subjective time is

also susceptible to temporal context, voluntary actions,

attention, arousal and emotional states, all of which can

bias it away from physical time [2,3,4��,5,6]. Over the past

several decades, researchers have advanced our under-

standing of how we perceive and integrate multisensory

and sensorimotor timing, with examples such as the

‘central-tendency’ effect [7��,8��,9], the time shrinking

illusion [10], and sensorimotor temporal recalibration

[11,12��]. In this article we examine a few selected

duration-related temporal phenomena and related

computational models, and show how those phenomena

can be parsimoniously explained within the predictive

coding framework [13,14,16�]. We propose that subjective

time is an outcome of adaptive processes of the brain that

minimize the overall estimation error to boost the reli-

ability of estimation of external temporal structures.

Subjective time as inference
One and a half centuries ago Hermann von Helmholtz

famously suggested that perception can be understood as

a process of unconscious inference: ‘‘The connection be-

tween the sensation and external object can never be

expressed without anticipating it already in the designa-

tion of the sensation. . . This is because inductive reason-

ing is the result of an unconscious and involuntary activity

of memory’’ [17]. Time perception is also the result of

unconscious inference. Subjective time can be easily

influenced by internal expectation, as suggested by Karl

Vierordt [18] around the same time as von Helmholtz. He

observed that subjective judgment of duration is attracted

to an ‘indifference point’, which is close to the central

mean of all the durations experienced [9,18]. That is,

short durations tend to be overestimated and long dura-

tions underestimated. Hollingworth later coined this

phenomenon of gravitation toward the expected mean

magnitude as the ‘central tendency’ effect [19].

The recent surge of interest in the central tendency effect

[7��,8��,20�,21,22] has taken this topic to a new level within

Bayesian inference framework. This development has been

motivated by the fact that, across a wide variety of tasks, the

fundamental problem encountered by the brain is coping

with uncertainty [15]. To minimize uncertainty, the brain

needs to maximally utilize the available information, com-

bining not only sensory input but also top-down ‘prior

belief’ in a weighted average manner. In Bayesian terms,

perception emerges from probabilistic inference, including

the likelihood associated with the sensory evidence and

prior belief (see Box 1). While this type of weighted average

is clearly beneficial when the external environment is

relatively stable, combining multiple sources of information

in the brain would engender perceptual and cognitive biases

when the environment changes.

Jazayeri and Shadlen [7��] recently reinvestigated the

central tendency effect in duration reproduction using

a Bayesian approach, and confirmed that the fundamental

principle of central tendency is a strategy to minimize the

overall temporal reproduction errors by combining both

sensory likelihood and prior knowledge (e.g., the statisti-

cal distribution) of the to-be-estimated duration. Their

approach is illustrated in Figure 1. When asked to repro-

duce temporal intervals, people tend to underestimate

long intervals and overestimate short intervals, always

‘regressing toward the mean’. Importantly, the mean is set

dynamically, for the specific range being tested in that
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session. This is brought out most clearly for reproductions

at 850 ms: the bias can be either toward shorter or longer

intervals, depending on the range of intervals sampled in

that particular session (lower panels).

Note that the internal prior may not equate to the rigid

physical distribution of the stimuli, but rather be better

captured as a smoothed approximation of the distribu-

tions up to third-order moments [8��,20�]. As sensory

precision may vary among different groups of individuals

as well as across different modalities [8��,21,23], central

tendency effects vary according to the weighted average

strategy of Bayesian inference. By testing subjects with

various levels of musical expertise, Cicchini and collea-

gues [8��] have demonstrated the variation of tendency

effects is closely related to Bayesian optimal encoding.

Non-percussionists, who had large variability of visual

duration reproduction, showed a standard central tenden-

cy effect, while expert drummers responded veridically

owing to their high precision of reproduction (Figure 1).

Similar variations of central tendency has been shown in

patients with Parkinson’s disease [23]. Patients are less

prone to the central bias with their dopaminergic medi-

cation than without medication, as patients have higher

sensory reliability in their medication state. Those find-

ings [8��,21,23] suggest the brain represents recent statis-

tics of event duration, and this information is incorporated

in on-going perception, thus, producing biases such as

regression to the mean; however, the degree of tendency

biases depends crucially on the sensory reliability [8��].

Predictive coding of multisensory timing Shi and Burr 201

Box 1 Dynamic updating of priors in time perception

Various types of contextual calibration of time perception can be

explained in the framework of Bayesian inference(See Figure I) [4��].

The central idea of Bayesian inference is that the brain uses all

available temporal information to minimize the prediction error. One

source of temporal information comes directly from sensory inputs,

which depends on sensory measures and signal quality. For example,

for a given duration D, the sensory measure is S. This cue can be

expressed in Bayesian term as the likelihood function P(SjD). Another

cue that the brain often uses is internal expectation based on the prior

knowledge. In Bayesian term it is the prior function P(D). According to

Bayes’ rule, the probability of a duration being D, given the sensory

measure S is the product of the prior probability and the likelihood,

normalized by the probability of the sensory measures:

PðDjgSÞ ¼ PðSjgDÞPðDÞ
PðSÞ

The probability distribution P(SjD) is known as the posterior probability.

When both the likelihood and prior are independent Gaussians, the

optimal duration estimate can be predicted by

D ¼ wDs þ ð1�wÞDp

where Ds and Dp are the expected mean of the likelihood and prior, and

the weight w ¼ ð1=s2
sÞ=ð1=s2

s þ 1=s2
pÞ is proportional to its reliability, in

which 1=s2
s and 1=s2

p are the reliability of the likelihood and prior. The

variance of this optimal estimate is ðs2
ss

2
pÞ=ðs2

s þ s2
pÞ, which is the

minimum variance among all possible linear weighted combinations

between the sensory estimate and the prior. When there are two

conditional independent likelihoods (e.g., one from the auditory mo-

dality and another from the visual modality), and the prior is not the

focus factor, the optimal estimate is very similar:

D ¼ waDa þ ð1�waÞDb

where Da and Db are the mean of two individual sensory estimates, and

the weight wa is proportional to its reliability.

With predictive coding, the internal predictive prior is not fixed, but is

dynamically adjusted from the prediction errors. The top-down

predictions are delivered through the backward connections. So long

as this successfully predicts the lower level activity, all is well, and no

further action needs to ensue. But where there is mismatch, a

‘prediction error’ occurs and the ensuing (error-indicating) activity is

propagated to the higher level. This automatically adjusts probabilistic

representations at the higher level so that top-down predictions cancel

prediction errors at the lower level, yielding rapid perceptual inference

[13–15,16�]. In a simple case, this predictive processing can be

described by Kalman filter [4��,46] — a dynamic optimal prior updating

process when noises are Gaussian:

Pn ¼ ð1�gÞPn�1 þ gD

where Pn and Pn�1 are the priors at time n and n � 1, g is the Kalman

gain, which is optimally determined by the variances of the internal prior

and the prediction error. As shown by a developmental study on the

temporal recalibration [12��], Kalman gain is larger in the adult group

compared to the young groups (see text).
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Schematic illustration of Bayesian inference of duration. The red

curve denotes the likelihood P(SjD) for a given duration signal, the

blue curve the prior at time n, and the dashed blue curve the

updated prior at time n + 1. The dark green curve is the posterior

based on Bayesian inference. There are two updating processes: the

posterior updating based on the cues and the prior is for reliable

sensory estimates, and the prior updating based on error correction

is for minimizing forthcoming prediction errors.
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