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a  b  s  t  r  a  c  t

Procedures  that  can  predict  cognitive  abilities  from  brain  imaging  data  are  potentially  rele-
vant to educational  assessments  and studies  of  functional  anatomy  in  the developing  brain.
Our aim  in this  work  was  to quantify  the  degree  to which  IQ  change  in the  teenage  years
could  be  predicted  from  structural  brain  changes.  Two  well-known  k-fold  cross-validation
analyses  were  applied  to data  acquired  from  33  healthy  teenagers  –  each  tested  at  Time  1
and Time  2 with  a 3.5  year interval.  One approach,  a Leave-One-Out  procedure,  predicted
IQ change  for  each  subject  on the  basis  of  structural  change  in a brain  region  that  was  iden-
tified from  all  other  subjects  (i.e.,  independent  data).  This  approach  predicted  53%  of  verbal
IQ change  and  14%  of performance  IQ change.  The  other  approach  used  half  the  sample,
to  identify  regions  for  predicting  IQ change  in the  other  half  (i.e.,  a  Split  half  approach);
however  –  unlike  the  Leave-One-Out  procedure  – regions  identified  using  half  the  sample
were  not  significant.  We  discuss  how  these  out-of-sample  estimates  compare  to in-sample
estimates;  and  draw  some  recommendations  for  k-fold  cross-validation  procedures  when
dealing with  small  datasets  that  are  typical  in  the  neuroimaging  literature.

© 2013 Elsevier Ltd. 

1. Introduction

Neuroimaging data are most commonly used to find
brain areas where the functional response, or struc-
tural measurement, can be predicted by experimental,
behavioural or demographic variables. In this case, the
mapping of interest is from behavioural measurements
(the independent variable) to brain measurements (the
dependent variable) and enable one to infer that certain
brain areas are associated with the experimental manip-
ulation. These inferences can then be empirically tested
with  new data. For example, after demonstrating that the
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right cerebellum was activated during verbal fluency tasks
(Petersen et al., 1988, 1989), the same authors reported
that damage to the right cerebellum impaired verbal flu-
ency  (Fiez et al., 1992). In other words, a functional imaging
study  of healthy participants predicted functional spe-
cialisation that was confirmed with a neuropsychological
(structural imaging) study of patients, which led to a clini-
cally  relevant conclusion.

Inferences  about cognitive abilities from brain imaging
data have also been made in the developmental con-
text. For example, Hoeft et al. (2007) predicted children’s
reading skills from a combination of behavioural and neu-
roimaging measures. Cross-validation procedures of the
kind  reported in Hoeft et al. are essential in this context,
because predictions about behaviour will only generalise
if  they apply to subjects that were not used to select the
brain  region used to make those predictions. In cross vali-
dation  procedures, one sample is used to identify brain
regions mediating the behavioural phenotype, and another
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sample is used to predict the behavioural phenotype using
those  regions. If the same subjects are used in both steps,
the  predictive validation is circular (non-independent) and
there  is no replication of the structure-function relation-
ships. This is referred to as “circularity”, “double dipping”,
“the  non-independence problem” or “biased estimates”
(Kriegeskorte et al., 2009; Poldrack and Mumford, 2009;
Vul  et al., 2009).

In  the current study, we illustrate the use of two
different cross-validation procedures, with the aim of
quantifying how much of the variance in IQ change, mea-
sured  over the teenage years (Ramsden et al., 2011, 2012),
can  be predicted from structural brain changes – when the
predictions for IQ change are made for subjects that did not
contribute  to the selection of predictive brain areas (i.e., the
region  selection and prediction process used independent
data). The validation approaches we report, “Leave-One-
Out” and “Split-half”, are commonly used to test whether
the  results of a statistical analysis generalise to an inde-
pendent sample, and they are especially useful when new
samples  are costly or difficult to collect.

There are many re-sampling techniques that we  could
have  adopted in this context, including bootstrap, jack-
knife,  permutation tests and cross-validation. The “Split
half”  and “Leave-One-Out” procedures we assess here
are  both variants of k-fold cross validation. They involve
partitioning the full set of data into k non-overlapping
samples or sets: k − 1 samples are used as training sets
(e.g., to generate a hypothesis/model) and the remaining
sample is used as a validation set (e.g., to test a hypothe-
sis/model). In the present context, this translates to k − 1
samples  being used to identify brain areas associated
with a behavioural phenotype (behaviour-to-brain) and
the  remaining sample being used to predict behaviour from
brain  measurements (brain-to-behaviour). This procedure
is  then repeated with different training and validation
sets (derived from the same overall sample) – and the
results from each iteration/fold are averaged to produce
a  single estimate. The advantage of repeating the proce-
dure (with k folds) is that all observations are used for
both  training and validation, without replacement. More
specifically, k-fold cross validation only assumes that the
original  sample is chosen at random from the popula-
tion and the samples (partitions or subsets) are in turn
chosen at random from that original sample. Although
the validation and training sets are drawn from the same
population, cross-validation is not considered to produce
biased results (Efron and Tibshirani, 1997; Hastie et al.,
2009).

Variations in the k-fold procedure differ according to
how  the full sample is partitioned and with the number
of  iterations used (i.e., the value of k); see review in Arlot
and  Celisse, 2010. The robustness and appropriateness
of each k-fold procedure can be assessed against several
criteria; including bias, variance, sensitivity, completeness
and computational cost. Different k-fold procedures are
expected  to perform comparably when the sample is rela-
tively  large; however, differences may  emerge when the
sample  size is too small (e.g., in the case of a biased or
skewed distribution). Ideally, different procedures can be
tested  with increasing values of k (varying between 2

to  the number of subjects); however, the computational
cost can become unmanageable; particularly when many
iterations must be performed for a given k value. In the
current paper, we compared k-fold cross-validation when
the  value of k was  set to either its lower limit (k = 2 = the
Split-half analysis) or to its upper limit (for our sample
size k = 33 = the Leave-One-Out analysis). These k values
reflect the two extremes for the given number of sub-
jects (i.e., half of the subjects for k = 2 to all but one
subject for k = 33). The effectiveness of the two  proce-
dures can then be compared on the basis of: (i) type-II
errors during region selection, (ii) the proportion of vari-
ance  in measured IQ change that could be accounted for
by  structural change, when tested on the remaining (inde-
pendent) subsets, and (iii) the computational cost of both
procedures.

In  more detail, to implement the Leave-One-Out
approach, all but one of the available observations are used
in  the training set and the remaining observation (that
is  left out) is used to validate the results (Hastie et al.,
2009). The procedure is then repeated k times, with k being
equal  to the number of observations in the full sample,
and with each observation occurring once in the test set
and  k − 1 times in the training set. The advantages of this
approach are that (i) power in the training set is max-
imised (by including all but one observation) and (ii) there
are  a (usually comparatively small) finite number of splits
that  is equal to the number of observations, see Efron
and Tibshirani (1997), Hastie et al. (2009), Strother et al.
(2002)  for further discussion. The Leave-One-Out proce-
dure  should therefore be efficient (statistically speaking)
for  small sample sizes.

To  implement the Split-half analysis, the full sample is
split  in half by randomly assigning data to two sets (A and
B),  so that both sets are of (approximately) equal size. In
this  2-fold or Split-half cross-validation, training starts on
Set  A, with testing on Set B, followed by training on Set B
and  testing on Set A. The main disadvantage of the Split-half
approach is that the ‘training sets’ (Set A in the first itera-
tion,  and Set B in the second) are smaller than they could be.
Put  simply, if the power per sample is low, then small train-
ing  set sizes could reduce the sensitivity of detecting effects
for  subsequent validation in the test set. As discussed in
Kohavi  (1995), when the sample is small – in the context
of a small k value (here k = 2) – there is variance due to
the  random effects of the training sets themselves (Kohavi,
1995).  One solution is to average the results after repeat-
ing  the procedure with multiple two-way splits. However,
if  the overall sample size is too small, none of the train-
ing  analyses will have sufficient power to detect effects
of  interest (Poldrack and Mumford, 2009). Moreover, for
a  reasonably sized sample, there will be an almost infinite
number of possible partitions of the same data. If only a
few  random partitions are tested, some observations may
never  be selected in the validation subsample, whereas
others may  be selected more than once. These consider-
ations suggest that – for a maximally sensitive analysis –
the  Leave-One-Out procedures may  be preferable over split
half  procedures. In what follows, we test this conjecture
quantitatively, using a reanalysis of previously reported
data.
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