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a  b  s  t  r  a  c  t

Tensor  factorisations  have  proven  useful  to model  amplitude  and  spectral  information  of  brain  recordings.
Here,  we  assess  the  usefulness  of  tensor  factorisations  in  the  multiway  analysis  of  other  brain  signal
features  in  the  context  of  complexity  measures  recently  proposed  to inspect  multiscale  dynamics.  We
consider  the  “refined  composite  multiscale  entropy”  (rcMSE),  which  computes  entropy  “profiles”  showing
levels  of  physiological  complexity  over  temporal  scales  for  individual  signals.  We  compute  the  rcMSE  of
resting-state  magnetoencephalogram  (MEG)  recordings  from  36 patients  with  Alzheimer’s  disease  and
26 control  subjects.  Instead  of  traditional  simple  visual  examinations,  we organise  the  entropy  profiles  as
a three-way  tensor  to inspect  relationships  across  temporal  and  spatial  scales  and subjects  with  multiway
data analysis  techniques  based  on PARAFAC  and  PARAFAC2  factorisations.  A  PARAFAC2  model  with  two
factors  was appropriate  to account  for the interactions  in  the entropy  tensor  between  temporal  scales  and
MEG  channels  for all subjects.  Moreover,  the  PARAFAC2  factors  had  information  related  to  the  subjects’
diagnosis,  achieving  a cross-validated  area  under  the  ROC  curve  of  0.77.  This  confirms  the suitability
of  tensor  factorisations  to represent  electrophysiological  brain  data  efficiently  despite  the  unsupervised
nature  of these  techniques.

This  article  is  part  of a  Special  Issue  entitled  ‘Neural  data  analysis’.
© 2015  Elsevier  Inc.  All  rights  reserved.

1. Introduction

The electroencephalogram (EEG) and magnetoencephalogram
(MEG) are non-invasive neurophysiological recordings of the small
electromagnetic fields generated by the neurons. Both EEG and
MEG  are direct measures of the neural activity and they have
excellent temporal resolution (Lopes da Silva, 2013). The transient
temporal fluctuations in the EEG and MEG  signals reflect the sig-
nal variability, which conveys information about the brain (Heisz
and McIntosh, 2013; Lopes da Silva, 2013; Stam, 2005). Among the
variety of techniques useful to assess such variability, the evalua-
tion of relationships across multiple temporal scales has recently
sparked interest in the field (Escudero, 2015; Heisz and McIntosh,
2013; McDonough and Nashiro, 2014; Morabito et al., 2012).
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Such interest is motivated by the fact that the presence of tem-
poral relationships over short and long scales is an inherent part of
physiological signals and it is essential for the evaluation of phys-
iological complexity (Costa et al., 2002; Goldberger et al., 2002), a
topic with implications in both diagnosis support and the evalua-
tion of dynamical models of biological systems (Costa et al., 2005,
2002; Escudero, 2015). Loss of complexity is often related to age-
ing and/or pathological conditions because it may  reflect decreased
ability to adapt to an ever-changing environment (Ahmed and
Mandic, 2011; Costa et al., 2005, 2002; Goldberger et al., 2002;
Tononi and Edelman, 1998; Yang and Tsai, 2013).

Multiscale entropy (MSE) is a signal complexity metric that
inspects relationships across multiple temporal scales (Costa et al.,
2005, 2002). The ability of the MSE to characterise brain dynam-
ics in EEG and MEG  signals has been demonstrated in several
conditions (Bosl et al., 2011; Catarino et al., 2011; Chung et al.,
2013; Escudero et al., 2006; Heisz and McIntosh, 2013; Takahashi
et al., 2010; Yang et al., 2013). The MSE algorithm has recently
been improved in terms of accuracy and validity over long scales
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(Wu et al., 2013, 2014), leading to the so-called refined composite
MSE  (rcMSE). However, both MSE  and rcMSE are applied to single
channel recordings. Moreover, the entropy “profiles” resulting from
different channels are compared only visually. This is in contrast
with the fact that complex dynamics may  lead to structure on both
multiple spatial and temporal scales and it shows the need for data-
driven approaches to inspect potential relationships over several
channels and temporal scales across different subjects.

Significant efforts have been devoted to finding efficient
data-driven representations of electrophysiological brain data
(Miwakeichi et al., 2004). Common methods rely on represent-
ing the data at hand in the form of a matrix (two-way array) and
then factorising it (using, for example, principal component analy-
sis – PCA – or independent component analysis – ICA). However, an
intrinsic problem of these representations is that the factorisations
defined by only two modes (i.e., rows and columns in matrices that
represent, for example, space and time) are not uniquely deter-
mined: additional constraints are needed to make them unique
(Acar and Yener, 2009; Miwakeichi et al., 2004; Möcks, 1988;
Mørup et al., 2006). In PCA, orthogonality between components is
imposed. ICA uses an even stronger constraint: statistical indepen-
dence (Miwakeichi et al., 2004). These a priori assumptions are not
fully realistic from a physiological point of view for neuroscience
data (De Vos et al., 2007; Miwakeichi et al., 2004; Mørup et al.,
2006).

Matrices may  provide a too limited representation of the
information captured in brain research experiments, where often
temporal data coming from several subjects, channels, etc. needs to
be jointly analysed (Acar and Yener, 2009). A powerful alternative is
to maintain the naturally occurring N-way (with N ≥ 3) structure of
the data intact and to consider multiway data analysis techniques.
This refers to the extension of two-way techniques to N-way data
arrays (i.e., higher-order tensors) (Acar and Yener, 2009). Work-
ing with higher-order tensors has the major advantage that unique
multi-linear factorisations can be achieved under fairly mild condi-
tions, meaning that we are able to estimate the latent components
that gave rise to the data (Cichocki et al., 2015; Kolda and Bader,
2009; Miwakeichi et al., 2004; Möcks, 1988; Mørup, 2011). Indeed,
tensor arrays occur naturally in various settings of brain research
and they can often be factorised as a sum of factors, each of which
is the product of the components in each way (Miwakeichi et al.,
2004).

Seminal studies introduced multiway factorisations (particu-
larly parallel factor analysis – PARAFAC, see Section 3.3.1) in
the analysis of EEG event-related potentials (ERPs) (Cole and
Ray, 1985; Möcks, 1988). Miwakeichi et al. (2004) further illus-
trated the use of PARAFAC to compute a tri-linear decomposition
of a time-frequency representation of EEG signals in differ-
ent cognitive states. More recent studies used these approaches
for artefact recognition in brain recordings (Acar et al., 2007).
The use of PARAFAC has also been demonstrated in tensor
factorisations of ERPs with N > 3 (e.g., N = 5 with modes: chan-
nel × frequency × time × subject × condition) (Mørup et al., 2006).
Epilepsy has been a prolific field of research for tensor factorisations
of brain features, including the detection of seizure onset zone (Acar
et al., 2007; De Vos et al., 2007). Multiway array decompositions
have also been applied to spectral characteristics of EEG signals
in dementia (Latchoumane et al., 2012). Overall, PARAFAC, one of
the simplest tensor factorisation methods, has been the dominant
technique in the literature despite other models being potentially
more appropriate for some brain research experiments (Cichocki
et al., 2015; Mørup et al., 2008).

Here, we illustrate the potential of tensor factorisations for
electrophysiological data analysis to the wider community by
proposing a data-driven tensor factorisation of rcMSE features com-
puted from MEG  signals of Alzheimer’s disease (AD) patients and

control (CON) subjects. We  report: (1) the first application of rcMSE
to brain activity; (2) a data-driven description of multiscale MEG
features based on multiway array decompositions; and (3) the clas-
sification of unseen subjects using the factors computed via the
multiway array decomposition, which is an unsupervised tech-
nique.

Our choice of AD is motivated by the fact that it is the most com-
mon  neurodegenerative disease in western societies. The number
of people suffering from AD is expected to double approximately
every 20 years (Wimo  and Prince, 2010). The onset of AD occurs
years before the first clinical symptoms appear and a definite diag-
nosis can only be achieved with a necropsy (McKhann et al., 2011).
Thus, diverse signal features are being investigated to monitor the
alterations that AD causes in resting-state brain activity (Hornero
et al., 2009; Stam, 2005).

2. Materials

Resting-state MEG  activity was recorded from 36 AD patients
and 26 healthy age-matched CON subjects. All participants gave
their informed consent for the research, which was  approved by
the local ethics committee. Exhaustive medical, neurological, psy-
chiatric, neuroimaging, and neuropsychological tests were used to
confirm the clinical diagnoses. The Mini-Mental State Examina-
tion (MMSE) (Folstein et al., 1975) and the Global Deterioration
Scale/Functional Assessment Staging (GDS/FAST) (Rosen et al.,
1984) were used to screen their cognitive and functional status,
respectively.

The 36 AD patients (24 females) met  the criteria for probable AD
according to NINCDS–ADRDA guidelines (McKhann et al., 1984).
Their mean age, MMSE  and GDS/FAST scores were 74.06 ± 6.95
years, 18.06 ± 3.36, and 4.17 ± 0.45, in that order (data given
as mean ± standard deviation, SD). The 26 CON  subjects (17
females) were 71.77 ± 6.38 years old (mean ± SD). Their MMSE  and
GDS/FAST scores were 28.88 ± 1.18 and 1.73 ± 0.45 (mean ± SD),
respectively. The difference in age between groups was not signif-
icant (p-value = 0.1911, Student’s t-test). All subjects were free of
significant neurological and psychiatric diseases other than AD and
were not taking medication that could affect the MEG  activity.

The MEGs were acquired in a magnetically shielded room with
a 148-channel whole-head magnetometer (MAGNES 2500 WH,  4D
neuroimaging) at the MEG  Centre Dr. Pérez-Modrego (Complutense
University of Madrid, Spain). The MEG  activity was recorded while
the subjects were lying on a patient bed with eyes closed and in
a relaxed state. They were asked to stay awake and not to move
eyes and head. For each participant, MEG  background activity was
recorded for 5 min  at 678.19 Hz with a 0.1–200 Hz hardware band-
pass filter. The MEG  equipment decimated each 5-min dataset by a
factor of four using a second-order Butterworth IIR anti-aliasing
filter, applied in both forward and reverse directions, with cut-
off frequency at 76.30 Hz (45% of the final sampling frequency:
fs = 169.55 Hz). Epochs of 10 s (1695 samples) with minimal ocu-
lar artefacts were selected for analysis. Finally, a notch filter at the
power line frequency (50 Hz) and an FIR bandpass filter between
1 Hz and 60 Hz were applied to the MEG  epochs.

3. Methodology

The description of our methodology starts with the explana-
tion of the rcMSE (Wu  et al., 2014). For a unidimensional signal,
the rcMSE computes levels of entropy for several temporal scales.
Afterwards, we  will describe how to take advantage of the mul-
tiway linkages in our data by building an ‘entropy tensor’ with
modes MEG  channels × temporal scales × subjects. The PARAFAC
(Carroll and Chang, 1970; Harshman, 1970) and PARAFAC2
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