

Available online at www sciencedirect com-

ScienceDirect

www.elsevier.com/locate/brainres

Review

Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease

Axel Petzold^{a,b}

^aVUmc, Department of Neurology, De Boelelaan 1118, 1007 MB Amsterdam, The Netherlands ^bUCL Institute of Neurology, Department of Neuroimmunology, University College London, Queen Square, London WC1N 3BG, United Kingdom

ARTICLE INFO

Keywords:

Article history: Accepted 1 December 2014 Available online 25 December 2014

Intermediate filaments
Glial fibrillary acidic protein
GFAP
Body fluid biomarker
Neurodegeneration
Autoimmune astrocytopathies

ABSTRACT

This review on the role of glial fibrillary acidic protein (GFAP) as a biomarker for astroglial pathology in neurological diseases provides background to protein synthesis, assembly, function and degeneration. Qualitative and quantitative analytical techniques for the investigation of human tissue and biological fluid samples are discussed including partial lack of parallelism and multiplexing capabilities. Pathological implications are reviewed in view of immunocytochemical, cell-culture and genetic findings. Particular emphasis is given to neurodegeneration related to autoimmune astrocytopathies and to genetic gain of function mutations. The current literature on body fluid levels of GFAP in human disease is summarised and illustrated by disease specific meta-analyses. In addition to the role of GFAP as a diagnostic biomarker for chronic disease, there are important data on the prognostic value for acute conditions. The published evidence permits to classify the dominant GFAP signatures in biological fluids. This classification may serve as a template for supporting diagnostic criteria of autoimmune astrocytopathies, monitoring disease progression in toxic gain of function mutations, clinical treatment trials (secondary outcome and toxicity biomarker) and provide prognostic information in neurocritical care if used within well defined time-frames.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Contents

1.	Intro	duction	18
2.	GFAP	structure and function	18
	2.1.	Genetics	18
	2.2.	Structure	19
	2.3.	Synthesis and assembly	19
	2.4.	Non-astrocytic expression and function of GFAP	19
	2.5.	Post-translational modifications	20
	2.6.	Degradation.	20

E-mail address: a.petzold@ucl.ac.uk

	2.7.	Function	20	
3.	GFAP	tests	20	
	3.1.	Qualitative techniques	20	
		3.1.1. Western and immunoblotting	21	
		3.1.2. Immunohistochemistry	21	
	3.2.	Quantitative techniques	21	
	3.3.	Single analyte technologies	21	
		3.3.1. ELISA	21	
		3.3.2. RIA	21	
	3.4.	Multiple analyte technologies	21	
		3.4.1. Mass-spectrometry	21	
		3.4.2. Fluorescence based multiplexing	21	
		3.4.3. Electrochemiluminescence based multiplexing	22	
	3.5.	GFAP auto-antibodies	22	
	3.6.	GFAP hook effect	22	
4.	GFAP	body fluid levels	22	
	4.1.	Neuromyelitis optica	22	
	4.2.	Multiple sclerosis	23	
	4.3.	Alexander disease	24	
	4.4.	Cerebrovascular pathology	24	
	4.5.	Traumatic brain injury	25	
	4.6.	Traumatic spinal cord injury	25	
	4.7.	Alzheimer's disease	25	
	4.8.	Hydrocephalus	26	
	4.9.	Miscellaneous conditions	26	
5.	Class	sification of GFAP body fluid biomarker patterns	26	
Cor	nflict o	of interest	27	
Acl	nowle	edgments	27	
Poforoncos				

1. Introduction

The discovery of glial fibrillary acidic protein (GFAP) by Lawrence F. Eng in 1969 published in this Journal represented the first step to unravel the chemical properties of those fibres giving rise to the distinctive intra-cytoplasmic features of astrocytes (Eng et al., 1970, 1971). The GFAP protein equips astrocytes with a nematic liquid crystal hydrogel, able of rapid fibre reorganisation. Like other cellular fibres, GFAP is classified by fibre diameter (8–12 nm) as intermediate between the smaller microfilaments (7 nm) and the larger microtubules (\approx 25 nm) (Fuchs and Cleveland, 1998). Expression of GFAP in the human brain occurs pre-dominantly in astrocytes and is about 10 times higher compared to rodent astrocytes (Lundgaard et al., 2014). It is the highly cell-type specificity and stability which qualifies this class III intermediate filament (IF) as a biomarker for human disease.

This review on GFAP as a protein biomarker (1) discusses protein synthesis and assembly; (2) introduces quantitative and qualitative analytical methods; (3) explains the clinico-pathological relationships underlying the biomarker hypothesis; and (4) reviews the evidence to use GFAP biomarker signatures as supportive diagnostic criteria, monitoring disease progression and improving prognostic accuracy.

2. GFAP structure and function

GFAP is a relatively non-soluble acidic cytoskeletal protein. It is the principal IF of the human astrocyte. First, viewed with

the electron microscope, GFAP appears as bundled fibres of 8–12 nm diameter in the astrocytes. With the availability of specific antibodies, GFAP can be visualised using routine immunohistochemistry. The specificity of GFAP for astrocytes is such that GFAP has become one of the most useful proteins for identifying astrocytes in the brain (Bignami et al., 1972). There is heterogeneity in astrocytes. Expression of GFAP is higher in white matter compared to grey matter astrocytes (Lundgaard et al., 2014). In the retina GFAP is specific for Müller cells and astrocytes (Goel and Dhingra, 2012).

2.1. Genetics

The human GFAP gene was cloned in 1989 and is mapped to chromosome 17q21.1-q25 (about 10 kb DNA) (Reeves et al., 1989; BongcamRudloff et al., 1991). The gene consists of 8 introns and 9 exons, with 4 alternative exons and 2 alternative introns (3 kb, mRNA). Alternative splicing leads to 6 GFAP isoforms (Middeldorp and Hol, 2011) (Fig. 1). Of these α -GFAP is most abundant in the human CNS (Middeldorp and Hol, 2011). The calculated protein length in aminoacids is 432 for α -GFAP, \geq 321 for β -GFAP, 431 for γ/ϵ -GFAP, 438 for κ -GFAP, 374 for Δ 135–GFAP, \leq 366 for Δ 164–GFAP and \leq 347 for Δ 20070. The complex regulatory mechanisms governing alternative splicing of the GFAP gene have not yet been fully unravelled (Blechingberg et al., 2007). It is not yet clear if all of these get translated into protein, but there is good evidence for α -GFAP, β -GFAP and Δ -GFAP.

Download English Version:

https://daneshyari.com/en/article/6263138

Download Persian Version:

https://daneshyari.com/article/6263138

<u>Daneshyari.com</u>