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the mechanisms that underlie learning and memory formation. We have integrated the
current knowledge on synaptic proteins to relate this plethora of molecules with actin and
actin-binding proteins. We further included recent findings that outline key uncharacter-
ized proteins that would be useful to unveil the real ultrastructure and function of
dendritic spines. Furthermore, this review is directed to understand how such spine
diversity and interplay contributes to the regulation of spine morphogenesis and
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dynamics. It highlights their physiological relevance in the brain function, as well as it

provides insights for pathological processes affecting dramatically dendritic spines, such

as Alzheimer’s disease.
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1. Introduction soma. Each spine receives inputs typically from one excita-

The brain function relies on the organization of the neuronal
circuitry, which is a vastly interconnected network of
synapses. Synapses mediate neuronal communication pri-
marily via neurotransmitters, which are endogenous chemi-
cal compounds that can be released from the pre- to the
postsynaptic compartment. In general terms, they are com-
posed of a varicosity or bouton from a presynaptic neuron
that contains coated vesicles filled with neurotransmitters
and communicates with the postsynaptic neuron, usually
through a dendritic spine.

Throughout evolution, the vertebrate brain has acquired
differential morphological modifications to achieve more
complex functions. Thus, vertebrates developed spiny neu-
rons to produce higher levels of cortical processing (Sala
et al., 2008). Dendritic spines are membranous protrusions
arising from the dendritic shaft, which are considered to be
the locus of the vast majority of excitatory synapses in the
central nervous system (CNS), accounting for almost the 90%.
They are preferentially located on peripheral dendrites of
neocortical and hippocampal pyramidal neurons, as well as
in the striatum and in cerebellar Purkinje cells. Nevertheless,
they can be also found on proximal dendrites or even on the

tory synapse, although spine-type synapses with inhibitory
axons have also been described. In addition, there are smooth
or aspiny neurons with dendrites carrying few or no spines
that are immunopositives for gamma-aminobutyric acid
(GABA) (Roussignol et al., 2005). However, for the purposes
of the present work we focus on hippocampal spiny neurons,
since they are key structures in learning and memory
formation and they provide biochemical compartments that
locally control and integrate signaling inputs into complex
neural networks (Bourne and Harris, 2008).

During the last decades, different speculative hypothesis
have been developed in order to grasp why excitatory axons
choose to contact spines, since there are also aspiny neurons
that form synapses directly on the dendritic shaft. Initially,
three principal hypotheses were postulated to explain the
function of spines (Lee et al., 2012).

The first one implies that spines connect axons to
enhance synaptic connectivity and provide proper synaptic
transmission, making the neuronal matrix more distributed.

The second one proposes that spines are electrically
favorable, since spine neck morphology can impact the
kinetics and propagation of synaptic potentials, allowing
input-specific plasticity. In the third place, it is postulated
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