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Natural image sequences constrain dynamic
receptive fields and imply a sparse code
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a b s t r a c t

In their natural environment, animals experience a complex and dynamic visual scenery.

Under such natural stimulus conditions, neurons in the visual cortex employ a spatially

and temporally sparse code. For the input scenario of natural still images, previous work

demonstrated that unsupervised feature learning combined with the constraint of sparse

coding can predict physiologically measured receptive fields of simple cells in the primary

visual cortex. This convincingly indicated that the mammalian visual system is adapted to

the natural spatial input statistics. Here, we extend this approach to the time domain in

order to predict dynamic receptive fields that can account for both spatial and temporal

sparse activation in biological neurons. We rely on temporal restricted Boltzmann

machines and suggest a novel temporal autoencoding training procedure. When tested

on a dynamic multi-variate benchmark dataset this method outperformed existing models

of this class. Learning features on a large dataset of natural movies allowed us to model

spatio-temporal receptive fields for single neurons. They resemble temporally smooth

transformations of previously obtained static receptive fields and are thus consistent with

existing theories. A neuronal spike response model demonstrates how the dynamic

receptive field facilitates temporal and population sparseness. We discuss the potential

mechanisms and benefits of a spatially and temporally sparse representation of natural

visual input.

& 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Physiological and theoretical studies have argued that the
sensory nervous systems of animals are evolutionarily

adapted to their natural stimulus environment (for review

see Reinagel, 2001). The question of how rich and dynamic

natural stimulus conditions determine single neuron res-

ponse properties and the functional network connectivity in
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mammalian sensory pathways has thus become an important
focus of interest for theories of sensory coding (for review see
Simoncelli and Olshausen, 2001; Olshausen et al., 2004).

For a variety of animal species and for different modalities
it has been demonstrated that single neurons respond in a
temporally sparse manner (Reinagel, 2001; Jadhav et al.,
2009; Olshausen et al., 2004; Hromádka et al., 2008) when
stimulated with natural time-varying input. In the mammal
this is intensely studied in the visual (Dan et al., 1996;
Vinje and Gallant, 2000; Reinagel and Reid, 2002; Yen et al.,
2007; Maldonado et al., 2008; Haider et al., 2010; Martin and
Schröder, 2013) and the auditory (Hromádka et al., 2008;
Chen et al., 2012; Carlson et al., 2012) pathway as well as in
the rodent whisker system (Jadhav et al., 2009; Wolfe
et al., 2010). Sparseness increases across sensory processing
levels and is particularly high in the neocortex. Individual
neurons emit only a few spikes positioned at specific
instances during the presentation of a time-varying
input. Repeated identical stimulations yield a high reliability
and temporal precision of responses (Herikstad et al., 2011;
Haider et al., 2010). Thus, single neurons focus only on a
highly specific spatio-temporal feature from a complex input
scenario.

Theoretical studies addressing the efficient coding of
natural images in the mammalian visual system have been
very successful. In a ground breaking study, Olshausen et al.
(1996) learned a dictionary of features for reconstructing a
large set of natural still images under the constraint of a
sparse code to obtain receptive fields (RFs), which closely
resembled the physiologically measured RFs of simple cells in
the mammalian visual cortex. This approach was later extended
to the temporal domain by van Hateren and Ruderman (1998),
learning rich spatio-temporal receptive fields directly from
movie patches. In recent years, it has been shown that a
number of unsupervised learning algorithms, including the
denoising Autoencoder (dAE) (Vincent et al., 2010) and the
Restricted Boltzmann Machine (RBM) (Hinton and
Salakhutdinov, 2006; Hinton et al., 2012; Mohamed et al.,
2011), are able to learn structure from natural stimuli and
that the types of structure learnt can again be related to
cortical RFs as measured in the mammalian brain (Saxe et al.,
2011; Lee et al., 2008, 2009).

Considering that sensory experience is per se dynamic
and under the constraint of a temporally sparse stimulus
representation at the level of single neurons, how could the
static RF model, i.e. the learned spatial feature, extend into
the time domain? Here we address this question with an
unsupervised learning approach using RBMs as a model class.
Building on an existing model, the Temporal Restricted
Boltzmann Machine (TRBM) introduced by Sutskever and
Hinton (2007), we introduce a novel learning algorithm with
a temporal autoencoding approach to train RBMs on natural
multi-dimensional input sequences. For validation of the
method, we test the performance of our training approach
on a reference dataset of kinematic variables of human
walking motion and compare it against the existing TRBM
model and the Conditional RBM (CRBM) as a benchmark
(Taylor et al., 2007). As an application of our model, we
train the TRBM using temporal autoencoding on natural
movie sequences and find that the neural elements develop
dynamic RFs that express smooth transitions, i.e. translations
and rotations, of the static receptive field model. Our model
neurons account for spatially and temporally sparse activities
during stimulation with natural image sequences and
we demonstrate this by simulation of neuronal spike train
responses driven by the dynamic model responses. Our
results propose how neural dynamic RFs may emerge natu-
rally from smooth image sequences.

2. Results

We outline a novel method to learn temporal and spatial
structure from dynamic stimuli – in our case smooth image
sequences – with artificial neural networks. The hidden units
(neurons) of these generative models develop dynamic RFs that
represent smooth temporal evolutions of static RF models that
have been described previously for natural still images. When
stimulated with natural movie sequences the model units are
activated sparsely, both in space and time. A point process
model translates the model's unit activation into sparse neu-
ronal spiking activity with few neurons being active at any
given point in time and sparse single neuron firing patterns.

Fig. 1 – Described model architectures: (A) Autoencoder; (B) RBM; (C) Conditional RBM and (D) Temporal RBM. In the CRBM
(subfigure C; see also Section 4), there is a hidden layer only at the current sample time whose activation is defined by weights
connecting the current as well as previous activations of the visible layer. The TRBM (subfigure D) has a hidden layer
instantiation for each sample time within the models delay dependency and the temporal evolution of the model is defined
by lateral connections between the hidden units of consecutive time steps.
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