

Available online at www.sciencedirect.com

SciVerse ScienceDirect

www.elsevier.com/locate/brainres

Research Report

Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats

Jun Yin a,1 , Chao Tu a,1 , Jie Zhao b,1 , Danmin Ou c , Guangwen Chen c , Ying Liu c,* , Xianzhong Xiao c

^aClinical Medicine for Eight-year-program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China

ARTICLE INFO

Article history:
Accepted 25 October 2012
Available online 1 November 2012

Keywords: Hydrogen sulfide (H₂S) Ischemia–reperfusion Brain Oxidative stress Inflammation Apoptosis

ABSTRACT

The present study was undertaken to study the effects of exogenous hydrogen sulfide (H2S) on global cerebral ischemia-reperfusion(I/R) and the underlying mechanisms. After a 24 h I/R, administration of NaHS, an exogenous donor for H_2S , at the dose of 0.2 or 0.4 μ mol/kg significantly decreased the apoplexy index, neurological symptom scoring, and brain infarcted area as compared to the I/R group in a dose dependent manner. At the same time, NaHS-treated rats displayed significant reduction of MDA content, and striking increase of SOD activity in the brain tissues compared with I/R group. The up-regulated mRNA levels of p47^{phox} and gp91^{phox} subunits of NADPH oxidase were also suppressed by NaHS treatment. In this study, the pro-inflammatory markers TNF- α and MCP-1 in I/R group were markedly increased by 24 h I/R, which were significantly attenuated by NaHS in a dose-dependent manner. In contrast, the anti-inflammatory factor IL-10 was markedly induced by NaHS administration. In addition, the expression of the anti-apoptotic protein Bcl-2 was significantly decreased in I/R group compared with the sham-operated group. This reduction was significantly blunted in NaHS-treated group. On the contrary, the proapoptotic protein Bax content in brain tissues of I/R group was markedly elevated compared with sham-operated animals. And such an induction of Bax content was significantly ameliorated by NaHS. Taken together, our results suggest that hydrogen sulfide has potent protective effect against a severe cerebral injury induced by a global I/R possibly through the inhibition of oxidative stress, inflammation and apoptosis.

© 2012 Elsevier B.V. All rights reserved.

^bDepartment of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China

^cLaboratory of Shock, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China

^{*}Correspondence to: Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, China. Fax: 86 731 82355019.

E-mail address: liu1977ying@126.com (Y. Liu).

¹ These authors contributed equally to this work.

1. Introduction

Hydrogen sulfide (H2S) has been well known as a toxic gas and environmental pollutant with an offensive odor of rotten eggs for many decades (Elsey et al., 2010). However, emerging evidences indicated the important physiological effects of H2S as a novel type of endogenous neural regulatory factor and gaseous mediator (Lowicka and Beltowski, 2007). In particular, it has been demonstrated that the administration of H2S significantly ameliorates ischemia-reperfusion (I/R) injury in multiple organs. In myocardial I/R injury (Johansen et al., 2006), sodium hydrosulfide (NaHS), an exogenous donor for H2S, can not only reduce the mortality rate of rats after myocardial I/R injury, improve left ventricular systolic function and diastolic function, but also reduce the adhesion of white blood cells, hyperplasia and hypertrophy of cardiac fibroblast, and lipid peroxidation. In an intestinal I/R rat model (Liu et al., 2009), H2S can significantly protect the intestinal mucosal injury associated with a reduction of malondialdehyde (MDA) activity and the increased activity of superoxidase dismutase (SOD) and GSH-Px in Sprague-Dawley (SD) rats. As for the hepatic I/R injury (Kang et al., 2009), administration of NaHS significantly attenuated the severity of liver injury and inhibited the oxidative stress, inflammation and apoptosis.

A recent study interestingly showed that H_2S at a low concentration significantly attenuated the injury in a mild focal cerebral ischemia rat model (Florian et al., 2008). Most recently, Kimura et al. reported that H_2S can improve the glutathione(GSH) levels of brain in an intrauterine I/R (5 min/24 h) model (Kimura et al., 2010). Minamishima et al. also reported that Na_2S can effectively benefit neurological function in parallel with a

reduction of caspase-3 in hippocampus and enhancement of anti-apoptotic protein GSK-3 β in brain cortex in a mouse model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR) (Minamishima et al., 2009). All these studies convincingly demonstrated the neuro-protective role of H_2S during a relatively moderate brain injury. However, it is worth to examine if H_2S is still potently beneficial under a much more severe cerebral injury status. In present study, the authors employed a rat cerebral I/R model with longer time global ischemia and investigated the effect of H2S in this particularly severe injury model, as well as the underlying mechanisms.

2. Results

2.1. NaHS attenuated global cerebral I/R injury

In this study, two behavioral tests (apoplexy index and neurological symptom scoring) were performed to determine the neurological outcome. As shown in Tables 1 and 2, the apoplexy index and neurological symptom scoring were much higher at 6 h, 12 h and 24 h after global cerebral I/R than sham-operation group. Treatment with NaHS (0.2 and 0.4 μ mol/kg, ip) significantly decreased the apoplexy index and neurological symptom scoring as compared to that of I/R group in a dose dependent manner.

By TTC staining (Fig. 1), no infarcted area of the global cerebral tissue in SD rats was seen in sham-operation group. While the infarcted areas in 0.2 μ mol/kg and 0.4 μ mol/kg NaHS groups were (23 \pm 2)% and (9 \pm 2)% respectively, which were both lower than that in I/R group [(55 \pm 4)%]. Higher dose of NaHS (0.4 μ mol/kg)

Table 1 – Effects of NaHS on the apoplexy index after global cerebral I/R.							
Group	n	Time after	Time after ischemia–reperfusion				
		0 h	6 h	12 h	24 h		
Sham I/R NaHS (0.2 µmol/kg)+I/R NaHS (0.4 µmol/kg)+I/R	6 6 6	0 0 0 0	0 6.83±0.75** 5.67±0.82*** 3.83±0.75****	0 6.33±0.52** 5.00±0.63*** 3.17±0.75***	0 $5.83 \pm 0.75^{**}$ $4.50 \pm 0.55^{**}$ $2.67 \pm 0.52^{**}$		

^{**} p < 0.01 vs. Sham group.

^{**} p < 0.01 vs. I/R group by single-measures ANOVA.

Table 2 – Effects of NaHS on the neurological symptom scoring after global cerebral I/R.								
Group	n	Time after ischemia-re	Time after ischemia-reperfusion					
		6 h	12 h	24 h				
Sham I/R NaHS (0.2 µmol/kg)+I/R NaHS (0.4 µmol/kg)+I/R	6 6 6	0 17.67 \pm 1.37** 14.00 \pm 0.89** 8.67 \pm 0.52**	0 $16.17 \pm 1.17^{**}$ $13.00 \pm 0.63^{**}$ $7.17 \pm 1.17^{**}$	0 $14.83 \pm 1.17^{**}$ $11.00 \pm 1.41^{**}$ $6.33 \pm 0.82^{**}$				

^{**} p < 0.01 vs. Sham group.

p < 0.05 vs. I/R group.

 $^{^{\}sharp}$ p < 0.05 vs. I/R group.

 $^{^{\}sharp\sharp}$ p < 0.01 vs. I/R group by single-measures ANOVA.

Download English Version:

https://daneshyari.com/en/article/6264035

Download Persian Version:

https://daneshyari.com/article/6264035

<u>Daneshyari.com</u>