

Available online at www.sciencedirect.com

SciVerse ScienceDirect

www.elsevier.com/locate/brainres

BRAIN RESEARCH

Research Report

Generation and characterization of hD_5 and C-terminal Mutant hD_{5m} transgenic rats

Zhiliang Xu^{a,b,1}, Suzhen Dong^{a,b,1}, Dan Du^b, Nan Jiang^b, Peiqua Sun^c, Huikun Wang^c, Liang Yin^b, Xuliang Zhang^b, Xiaohua Cao^b, Xuechu Zhen^c, Yinghe Hu^{a,*}

^aShanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, PR China

^bKey Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, PR China ^cDepartment of Pharmacology, College of Pharmacy, Soochow University, Suzhou 215123, PR China

ARTICLEINFO

Article history: Accepted 28 January 2012 Available online 4 February 2012

Keywords: D_1 -like dopamine receptor Learning and memory Transgenic rat LTP

ABSTRACT

Dopamine D_1 -like receptors play important roles in many brain activities such as cognition and emotion. We have generated human hD_5 and mutant human hD_5 (hD_{5m}) transgenic rats. The C-terminal juxtamembrane domain of mutant hD_5 was identical to that of hD_5 pseudogenes. The transgenes were driven by the CAMKII promoter that led the expression mainly in the cerebral cortex and hippocampus. We have used different dopamine receptor agonists to compare the pharmacological profiles of the human hD_5 and hD_{5m} receptors. The results showed that they exhibited distinct pharmacological properties. Our results of pharmacological studies indicated that the C-terminal of D_5 receptor could play important roles in agonist binding affinity. Hippocampal long-term potentiation (LTP) evoked by tetanic stimulation was significantly reduced in both transgenic rats. In addition, we found that the overexpression of dopamine hD_5 and hD_{5m} receptors in the rat brain resulted in memory impairments. Interestingly, an atypical D_1 -like receptor agonist, SKF83959, could induce anxiety in hD_{5m} receptor transgenic rats but had no effect on the anxiety-like behavior in D_5 receptor transgenic and wild-type rats.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dopamine has been shown to play important roles in many brain functions including cognition, locomotion activity and emotion (Missale et al., 1998; Vallone et al., 2000). The physiological activities of dopamine are mediated via a family of G-protein coupled receptors (GPCRs). The dopamine receptors are generally divided into two groups, namely the D_1 -like and D_2 -like receptors. Pharmacologically, D_5 receptor exhibits

the classical ligand-binding characteristics of D_1 -like receptors, and displays a 10-fold higher affinity than D_1 receptor for the endogenous ligand dopamine (Sunahara et al., 1991).

Since the dopamine D_1 and D_5 receptors are pharmacologically undistinguishable, it is not clear which receptor subtype participates in the regulation of cognition and mood functions (Castellano et al., 1991; Hotte et al., 2005). It is interesting to note that the tissue distribution patterns of D_1 and D_5 receptors are very different. D_1 receptor is widely distributed in many

^{*} Corresponding author. Fax: +86 21 62601953. E-mail address: yhu@brain.ecnu.edu.cn (Y. Hu).

¹ Co-first author with the same contribution to this study.

tissues, while D_5 receptor is mainly expressed in the brain (Beischlag et al., 1995; Ciliax et al., 2000; Khan et al., 2000). Moreover, the highest level of D_5 expression is restricted in the cortex and hippocampus (Khan et al., 2000). Since these two brain regions have been strongly implicated in a variety of learning and memory processes, we speculated that the dopamine D_5 receptor subtype might participate in the regulation of learning and memory. Recently, a number of genetic engineered mouse models have been generated for the studies on the physiological functions of D_1 -like receptors. These studies demonstrated that D_1 -like receptors could be involved in hypertension (Jiang et al., 2003), elevation of sympathetic tone (Hollon et al., 2002), locomotion, startle, and prepulse inhibition (Holmes et al., 2001).

In this report, we demonstrated that human D₅ receptor is involved in memory. We have isolated a mutant hD5 dopamine receptor gene (named hD_{5m}) in which the hD_5 carboxyl terminal was replaced with C-terminal juxtamembrane domain of hD₅ pseudogene (Fig. 1). It has been reported that the C-terminal of D5 receptor was involved in interaction with GABA-A receptor (Liu et al., 2000). Therefore, we used the C-terminal mutant receptor to explore whether the mutation could affect the receptor function. Our pharmacological studies showed that the C-terminal of hD5 receptor was involved in the binding affinity with its agonist. Transgenic rats expressing human D₅ and the mutant hD_{5m} in forebrain have been generated to study the physiological functions of D₅ receptor and its carbonyl terminal. Electrophysiological analysis showed that hippocampal long-term potentiation (LTP) evoked by tetanic stimulation was significantly reduced in both hD₅ and hD_{5m} transgenic rat. Furthermore, we found that the overexpression of dopamine hD₅ and hD_{5m} genes in the brain resulted in memory impairments, indicating that dopamine D₅ receptor may play important roles in cognitive functions in rat. Our results also demonstrated that the mutant C-terminal of D₅ was involved in anxiety behavior.

2. Results

2.1. Pharmacological characterization of the C-terminal mutant of hD_5 dopamine receptor

We have isolated a mutant human dopamine D₅ receptor (hD_{5m}) using PCR method. DNA and protein analyses showed that the C-terminal region of the mutant receptor was identical to the hD₅ pseudogene (Fig. 1). We have performed radioligand binding assay, cAMP assay and calcium image to investigate the pharmacological differences between hD5 and hD5m. Saturation radioligand binding analysis using [3H]SCH23390, a radiolabeled D_1 -like receptor antagonist, showed that the receptor densities (B_{max}) in the membrane preparations of h_{D5} and hD_{5m} cell lines were almost identical (hD₅, 0.61±0.03 pmol/mg; hD_{5m} , 0.69±0.03 pmol/mg). However, the affinity (K_d) for [³H] SCH23390 binding to the hD_{5m} receptor was significantly different from that of hD5 receptor (hD5, 1.19 \pm 0.16 nM; hD5m, 2.37 \pm 0.25 nM. p<0.01) (Fig. 2A&B and Table 1). We further analyzed the pharmacological properties of hD5 receptors and hD5m using two D₁-like receptor agonists SKF83959 and SKF38393. As shown in Fig. 3 and Table 1, the K_i value of SKF83959 for hD_{5m} was seven-fold higher than that for hD₅ receptor (hD₅, $3.09\pm0.81\,\text{nM}$; hD5_m, $21.08\pm4.87\,\text{nM}$). On the other hand, SKF38393 for hD₅ receptor were only two-fold lower than that for hD_{5m} (hD_{5} , $0.53\pm0.04\,\mu\text{M}$; hD_{5m} , $1.36\pm0.32\,\mu\text{M}$), indicating the different binding property of the two D1-like receptor agonists on hD₅ receptor and hD_{5m}.

We further examined the biological activity of the mutant dopamine receptor in a cell-based assay. cAMP accumulation stimulated by SKF38393 and SKF83959 did not exhibit any significant difference between hD $_5$ and hD $_5$ m (Fig. 3 and Table 1). Since recent reports indicated that hD $_5$ -like receptor activation could induce the production of intracellular calcium release (Lezcano and Bergson, 2002; Tang and Bezprozvanny, 2004), we examined the potential effect of hD $_5$ and hD $_5$ m activation on intracellular

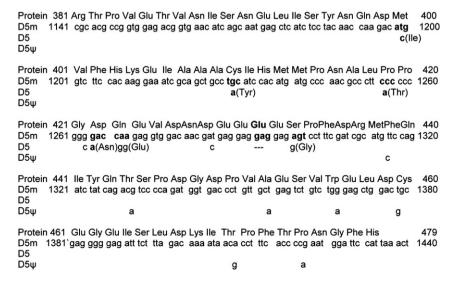


Fig. 1 – Comparison of nucleotide and deduced amino acid sequences of G-terminals of hD₅, hD_{5m} and pseudogenes hD_{5 Ψ}. The different base pairs are shown between hD₅, hD_{5m} and the pseudogene. Deletions and insertions are presented with dash and expanded carets.

Download English Version:

https://daneshyari.com/en/article/6264458

Download Persian Version:

https://daneshyari.com/article/6264458

Daneshyari.com