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Lateral thinking, from the Hopfield model to cortical dynamics
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Self-organizing attractor networks may comprise the building blocks for cortical dynamics,
providing the basic operations of categorization, including analog-to-digital conversion,
association and auto-association, which are then expressed as components of distinct
cognitive functions depending on the contentsof theneural codes ineach region. Toassess the
viability of this scenario, we first review how a local cortical patch may be modeled as an
attractor network, in which memory representations are not artificially stored as prescribed
binary patterns of activity as in the Hopfield model, but self-organize as continuously graded
patterns induced by afferent input. Recordings in macaques indicate that such cortical
attractornetworksmayexpress retrievaldynamicsovercognitivelyplausible rapid timescales,
shorter than those dominated by neuronal fatigue. A cortical network encompassing many
local attractor networks, and incorporating a realistic descriptionof adaptation dynamics,may
be captured by a Potts model. This network model has the capacity to engage long-range
associations into sustained iterative attractor dynamics at a cortical scale, in what may be
regarded as a mathematical model of spontaneous lateral thought.
This article is part of a Special Issue entitled: Neural Coding.
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1. Introduction: a universal
cortical transaction?

Information-processing models of cognitive functions, a most
productive approach developed over the last few decades,
have usually described those functions in terms of sequences
of specialized routines, conceptually akin to components of a
complex computer code. For example, the computation of the
trajectory to reach a particular goal in space may be described
as entailing the transformation of spatial information arriving
through the senses from sensor-based to allocentric coordi-
nates, then the construction or extraction from a memory
store of the relevant map of the environment, then the
geometric calculation of the available paths connecting the
current position and the goal, and of their properties, such as

time needed, energy expenditure, chances of failure (Hikosaka
et al., 1999; Kawato, 1999; Tanji, 2001; Wolpert, 1997). Reading
written text, instead, may be described as entailing the
extraction of line and corner elements, the recognition of the
abstract invariants characterizing each letter, the composition
of individual letters with error correction to form meaningful
words, a further error correction stage that takes into account
neighboring words, and a cascade of higher-level lexical and
semantic processes (Plaut, 1999). Associative processes have
often been seen as alternative side paths to the orderly usage
of such specialized routines, “lateral thinking” that may
occasionally provide a shortcut to, andmore frequently derail,
the successful execution of a task.

The ready availability of functional imaging techniques has
encouraged the further elaboration of such information
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processing models, promising to assign distinct cortical areas
as the theatres for the operation of several of the routines. Yet,
activation patterns observed with fMRI cannot resolve single
neuron activity, which would be necessary in order to test
information processing models at the algorithmic level.
Evidence from neurophysiological recordings in brain slices,
in rats and in macaques, and sparsely in human patients, on
the other hand, have essentially provided no evidence for any
other neuronal operation taking place in the cortex, other than
associative processes: associative synaptic plasticity and
associative retrieval. The hypothesis has to be entertained,
therefore, that the cerebral cortex may contribute nothing but
associative network processes, although theymay be “dressed
up” in different guises depending on the connectivity of each
cortical area and on the codes it expresses. For such a
hypothesis to be subject to validation or falsification, however,
the notion of associative processes has to be made precise, for
example in terms of amathematically defined networkmodel.

The Hopfield (1982) model meets the requirements for a
mathematically well-defined model of associative memory
retrieval, as it could be implemented in a local cortical
network. Its cortical plausibility has been questioned, howev-
er, because of several dramatic simplifying assumptions it
relied on, at least in the original version, as analyzed
mathematically by Amit, Gutfreund and Sompolinsky (1985,
1987). Moreover, it is a simplified model of memory retrieval
based on an even crudermodel of associativememory storage.
Over the nearly 3 decades since it was put forward, the effect
of many of those simplifications has been analyzed, mathe-
matically and with computer simulations, and overall it has
been found not to alter the qualitative import of themodel (see
Rolls and Treves, 1998). In this contribution, based in part on a
PhD Thesis (Akrami, unpublished) and including some origi-
nal results, we discuss quantitatively, with computer simula-
tions and with reference to recordings in monkeys, some of
the crucial conceptual steps that bridge the gap between the
Hopfield model and local cortical circuits, particularly with
regard to how memory representations may be stored, and
to the time scale for retrieval dynamics. The aim is to assess
the validity of a yet more abstract model of a local cortical
network—a single Potts unit—as a building block of models of
extended cortical networks, which operate exclusively through
associative processes.

2. Results

In the original Hopfield model, a memory item is retrieved
from the network when neural activity, stimulated by a partial
cue (usually given as a starting condition for the network),
evolves into a pattern strongly correlated with one of the p
representations which have been stored on synaptic weights.
Daniel Amit (1995) and others have pointed at such “attractor
dynamics” as a robust universal mechanism for memory
retrieval in the cerebral cortex, and in the hippocampus. How
smoothly can this retrieval operation proceed, and how wide
the “basins of attraction” are of the p memory states, should
depend on how memory representations are established
during the storage phase, which determines whether other

attractors may hinder or obstruct retrieval. In the hippocam-
pus, new memory representations are believed to be estab-
lished under the dominant and decorrelating influence of the
specialized dentate gyrus preprocessor, with its strong, sparse
connectivity to CA3, so an ad hoc analysis is required (Cerasti
and Treves, 2010). To assess, instead, how the storage process
affects retrieval capacity in the cortex, where no dentate
inputs are available, it is necessary to consider first the main
factors that determine the effectiveness of attractor dynamics:
connectivity, representational sparseness, the presence of
noise.

2.1. Effective retrieval capacity with cortically realistic
storage processes

A most important factor that determines retrieval is the
degree of connectivity in the network. In the original Hopfield
model the connectivity is complete, i.e. each of the N units in
the network receives input from all other N−1 units (Hopfield
1982). This simplifying assumption was linked to imposing
symmetry on the coupling constants, that is, the synaptic
weights, which in turn led to a great clarification of the
properties of auto-associative neural networks (Hopfield 1982;
Amit et al., 1985, 1987). The analysis of network performance
derived from statistical physics and applicable in the “ther-
modynamic” limit N→∞ can however be extended to the case
where the number C of inputs per unit is smaller than N, but
still it is regarded as very large, C→∞ (Sompolinsky, 1986);and
even in the so called “highly diluted” limit (C→∞ but C/N→0)
considered by Derrida et al. (1987). The symmetry of the
weights can likewise be discarded, leading to characterize
some interesting dynamical properties of asymmetric net-
works (Derrida and Pomeau, 1986; Sompolinsky and Kanter,
1986; Derrida et al., 1987; Kree and Zippelius, 1987; Crisanti and
Sompolinsky, 1987; Gutfreund et al., 1988). Overall the main
insight gained by introducing incomplete or sparse connec-
tivity, C<N−1, is rather simple: the capacity of networks with
symmetric or asymmetric weights is primarily determined by
C, and to a lesser extent by N. This result has been derived
many years ago, for example from a signal-to-noise analysis,
applicable when the synaptic weights encode p uncorrelated
memory patterns represented as sparse activity distributions
of sparsity a (Treves and Rolls, 1991). “Noise” here denotes the
interference due to other memory patterns, what in the
physics jargon is dubbed quenched noise. The analysis shows
that the signal scales as C, and the noise as √(pC). The relation
between the maximum number pc of patterns that can be
turned into dynamical attractors, i.e. that can be associatively
retrieved, and the number C of connections per receiving unit
takes the form, for sparsely coded patterns (in the limit a→0;
Treves and Rolls, 1991)

pc e k C
a ln 1

a

� �

where k is a numerical factor of order 0.1–0.2. In this limit pc is
independent of N.

The essential advantage introduced by the sparse connec-
tivity, if randomly diluted, is that quenched noise has less of
an opportunity to reverberate coherently. The signal from the
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