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The prefrontal cortex (PFC) subserves higher cognitive abilities

such as planning, reasoning and creativity. Here we review

recent findings from both empirical and theoretical studies

providing new insights about these cognitive abilities and their

neural underpinnings in the PFC as overcoming key adaptive

limitations in reinforcement learning. We outline a unified

theoretical framework describing the PFC function as

implementing an algorithmic solution approximating

statistically optimal, but computationally intractable, adaptive

processes. The resulting PFC functional architecture combines

learning, planning, reasoning and creativity processes for

balancing exploitation and exploration behaviors and

optimizing behavioral adaptations in uncertain, variable and

open-ended environments.
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Introduction
Adaptive behavior is critical for organisms to survive in

real-world situations that are often changing. Basal gan-

glia in vertebrates are subcortical nuclei including the

striatum that are thought to implement basic adaptive

processes akin to what is usually referred to as (temporal-

difference) Reinforcement Learning [1–4]. RL consists of

adjusting online stimulus–action associations to the re-

warding/punishing values of action outcomes. Important-

ly, RL is both a very simple and robust process endowing

the animal with the ability to learn optimal behavioral

strategies even in complex and uncertain situations [5��].
In mammals, basal ganglia further form loop circuits with

the prefrontal cortex (PFC) [6] to further the flexibility

and complexity of the behavioral repertoire, in essence

overcoming the critical limitations of the RL processes.

Here, we review recent findings from both empirical and

computational studies and outline a general theoretical

framework describing the PFC function as implementing

adaptive processes devoted to overcoming key RL adap-

tive limitations.

From reinforcement learning to adaptive
planning
A first critical limitation in basic RL (also named model-free
RL) is that behavior cannot adjust to internal changes in

subjective values of action outcomes [7,8]. Consider, for

instance, action A in a given situation leads to water and

action B leads to food. If you are thirsty but replete, RL

will reinforce action A relative to B in this situation. When

the situation reoccurs, you will then select action A rather

than B. If you are now hungry rather than thirsty, howev-

er, this is certainly a maladaptive behavior. The problem

arises because basic RL make no distinctions between

rewarding values of action outcomes and action outcomes

per se.

Overcoming this limitation requires learning an internal

model that specifies the outcomes resulting from actions,

regardless of rewarding values. Learning this model is

simply based on outcome likelihoods given actions and

current states. This predictive model is thus learned be-

sides the stimulus–action associations learned through

RL (collectively named the selective model here). The

predictive model especially enables to internally emulate

RL without physically acting [5��]: This model predicts

the outcomes of actions derived from the selective model,

so that their rewarding values may be internally experi-

enced according to the current motivational state of the

agent (e.g. thirsty or hungry). Stimulus–action associa-

tions are then adjusted accordingly through standard RL

algorithms. This emulation is commonly referred to as

model-based RL [5��]. Behavior is thus adjusted to the

agent’s motivational state before acting and reflects in-

ternal planning. Model-based RL also enables to gener-

ally adapt faster than RL to external changes in action-

outcome contingencies and/or outcome values [5��].

Empirical studies confirm that human behaviors cannot

be fully explained by model-free RL, but instead have a

model-based component. [9,10��,11]. Neuroimaging

studies show that both the inferior parietal cortex and

lateral PFC are involved in learning predictive models

[12], with the former possibly encoding these models [13]

and the latter, in association with the hippocampus,

retrieving these models for emulating model-based RL

[9]. Furthermore, empirical evidence argues that the
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orbitofrontal cortex (ventromedial PFC in humans) in

association with the striatum encode action outcomes

from predictive models and their actual rewarding values

[14–18,19�]. Together, these studies also suggest that the

ventromedial PFC may directly learn and encode simple

predictive models directly mapping stimulus–action pairs

onto expected valued outcomes [20�], while the inferior

parietal cortex and lateral PFC may be involved in

implementing more complex predictive models as

multi-step state–action–state maps (Figure 1).

Some authors have proposed that in the brain, model-free

and model-based RL form two concurrent instrumental

controllers. In this view, their relative contribution to

action selection is a function of the relative uncertainty

and/or reliability about reward and outcome expectations

derived from selective and predictive models, respective-

ly [21,22]. Others have proposed that model-free and

model-based RL form two cooperative systems with

model-free RL driving online behavior and model-based

RL working off-line in the background to continuously

adjust model-free RL [5��,10��,23]. Recent behavioral

results support the second view [10��]. As shown below,

this view is also more consistent with the present theo-

retical framework.

From adaptive planning to Bayesian inference
A second critical limitation of RL systems described

above is that adapting and learning new external contin-

gencies gradually erases previously learned ones. This

again leads to maladaptive behavior in environments

exhibiting periodically recurring external contingencies

(i.e. recurrent situations): RL systems have no memory

and need to entirely relearn previously encountered

situations. In uncertain and open-ended environments

where new situations may always arise (i.e. the environ-

ment corresponds to an infinite-multidimensional space),

overcoming this limitation requires solving a nonparamet-

ric probabilistic inference problem [24�] for constantly

arbitrating between continuing to adjust ongoing behav-

ior through (model-free and/or model-based) RL, switch-

ing to previously learned behaviors and even creating/

learning new behaviors. Previously learned behaviors

along with the ongoing behavior thus form a collection

of discrete entities stored in long-term memory and

referred to as task sets [25]. Task sets are abstract instan-

tiations of the situations the agent inferred to have

encountered so far and comprises the selective and pre-

dictive model learned when the task set guided behavior

[26]. Task sets further comprise an additional internal

model — the contextual model of the likelihood of any

external cues — learned when the task set guided behav-

ior in the past [27,28], and likely encoded in lateral PFC

regions [29,30]. The aforementioned arbitration problem

has optimal statistical solutions based on Dirichlet process

mixtures [31,32] which in practical cases, are actually

computationally intractable and consequently, biological-

ly implausible.

Recent studies, however, show that a biologically plausi-

ble, online algorithm approximating Dirichlet process

mixtures can account for human behavior in both recur-

rent and open-ended environments [24�,33�,34��]. This
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Reinforcement learning in the human frontal lobes. Schematic diagram

showing main subcortical and cortical structures involved in

reinforcement learning (RL). Green: brain regions involved in model-

free RL. BG: basal ganglia. SMA: supplementary motor area. Numbers

indicate broadmann’s area. BA 6: premotor cortex. Red: Brain regions

involved in model-based RL. vmPFC: ventromedial PFC. dmPFC:

dorsomedial PFC. OFC: orbitofrontal cortex. ACC: anterior cingulate

cortex. Arrows indicate critical interregional connectivity presumably

underpinning RL.
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