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The success of systems neuroscience depends on the ability

to forge quantitative links between neural activity and

behavior. Traditionally, this process has benefited from the

rigorous development and testing of hypotheses using tools

derived from classical psychophysics and computational

motor control. As our capacity for measuring neural activity

improves, accompanied by powerful new analysis strategies,

it seems prudent to remember what these traditional

approaches have to offer. Here I present a perspective on the

merits of principled task design and tight behavioral control,

along with some words of caution about interpretation in

unguided, large-scale neural recording studies. I argue that a

judicious combination of new and old approaches is the best

way to advance our understanding of higher brain function in

health and disease.

Address

Department of Neuroscience, Columbia University, USA

Corresponding author: Fetsch, Christopher R (crf2129@columbia.edu)

Current Opinion in Neurobiology 2016, 37:16–22

This review comes from a themed issue on Neurobiology of behavior

Edited by Alla Karpova and Roozbeh Kiani

http://dx.doi.org/10.1016/j.conb.2015.12.002

0959-4388/# 2015 Elsevier Ltd. All rights reserved.

Introduction
It is an exciting time for systems and cognitive neurosci-

ence. Methods for collecting and analyzing data are

improving at a remarkable pace [1,2], and questions once

limited to human and nonhuman primate studies are now

being addressed in smaller animal models for which large-

scale data collection and powerful circuit dissection tech-

niques are more tractable [3��,4]. However, the pursuit of

advanced technology and ‘big data’ should not come at

the expense of well-defined hypotheses and rigorous

behavioral control. For although we wish to understand

the inner workings of the mind, we only have access to a

coarse distillation thereof, namely behavior. The degree

of insight attainable in an experiment is therefore limited

not by how many neurons we record, but by the quality of

the mapping we can create between internal states and

behavioral reports.

The first part of this review describes some principles of

task design that originate in the quantitative study of

perception or movement, yet should prove useful for

probing processes that lie squarely in between. The

second part consists of a brief commentary on recent

approaches in the literature that might benefit from such

‘old fashioned’ behavioral tools. My goal is not to suppress

enthusiasm for new methods or to criticize any particular

approach, but to encourage renewed emphasis on smart

task design and careful quantification of behavior to help

make the most of these advances.

What is meant by behavioral control, and why
is it important?
If we want to understand how neural activity gives rise to

our sensations, thoughts, memories, and decisions, we

must come to grips with the fact that everything we know

about such internal processes can only be inferred by

observing external behavior. This is obviously true for

animal models, but also applies in human subjects for

whom introspection can be misleading and whose verbal

reports are just another form of behavioral assay. Making

things worse, this inference problem is ill posed: many

internal states could lead to the same behavioral outcome.

So how do we make progress? The key is to constrain the

space of possibilities as much as possible. Psychophysics

does this by (a) carefully controlling sensory input, (b)

measuring behavioral responses in a principled, quantita-

tive fashion, and (c) accounting for response variability with

an underlying statistical process, which then informs the

search for neural mechanism. Similarly, research in compu-

tational motor control relies on monitoring the output of the

system (i.e. eye or limb movements) with high resolution,

and constructing normative models that explain the vari-

ability of behavior in terms of what is being optimized, and

how [5–7]. In both cases, this kind of groundwork has been

highly successful in advancing our understanding of senso-

ry and motor processes. My contention is that the same

degree of rigor will be needed to support inferences about

the neural basis of cognitive functions.

Lessons from psychophysics
When vision scientists gained access to the physiology of

visual neurons in the mid-20th century, there was great

initial excitement but also caution [8,9]. Brindley [10] and

Teller [11] developed the concept of a ‘linking hypothesis’

as way to formalize what one can and cannot conclude

about how perception works based on properties of sensory

neurons. This idea, together with the insights of Barlow
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[12], Marr [9], and others, began to codify the brain–mind

relationship in a way that emphasized testable predictions

and an understanding of the computations the system must

perform. The resulting synthesis included a recognition

that strong interpretive statements about neurophysiology

should be predicated on a robust characterization of be-

havior (e.g. psychophysics) and a mathematical framework

that connects this behavior to a postulated internal state.

Several authors have recently articulated the basic prin-

ciples of psychophysics as they pertain to neuroscience

[3��,13��,14,15]. Here are a few considerations to keep in

mind when designing a behavioral task, and especially

when training animal subjects to perform it.

Account for errors

One of the most critical benchmarks is to ensure that

subjects are working ‘at threshold’ or nearly so — that is,

trained to asymptotic performance and fully engaged in the

task. To illustrate this point, imagine we want to under-

stand the stochastic process that leads to errors in a per-

ceptual judgment. To do this we have to convince

ourselves that the observed errors are not generated by a

separate process, distinct from the one we wish to study.

This is why, whenever possible, it is important to include

multiple levels of difficulty that span the range from (near)

perfect to chance performance, and to vary them randomly

from trial to trial. If your subjects can perform near 100%

correct on the easiest trials, even when they cannot predict

trial difficulty in advance, you can rule out a large class of

so-called ‘lapses’ — also termed guesses or random

choices — for explaining behavior on more difficult trials.

It might seem like a maximum of 85–90% correct is

sufficient, but consider that a lapse rate of 10–15% on a

binary choice task — not uncommon in animal studies,

particularly with rodents — implies that the subject is

guessing on 20–30% of the trials (because half the guesses

will be correct). Crucially, these trials are random from the

experimenter’s point of view and cannot simply be

detected and removed. No scientist would tolerate a

software glitch that covertly replaced a substantial frac-

tion of their data with random numbers, yet this is

essentially what a high lapse rate permits, at least in

principle. Although sophisticated behavioral modeling

[16] can isolate the contribution of lapses from other

sources of variability, this only applies to probabilities

over ensembles of trials. It does not prevent lapses from

corrupting attempts to relate single-trial neural activity to

behavior. It is worth noting here that rodents are capable

of achieving very low lapse rates, at least in certain tasks

[17�]. However, if high performance cannot be demon-

strated, this may be a sign that the chosen species is not a

good model for the task or process being studied.

In summary, experimenters should make every attempt to

design tasks and training procedures such that subjects are

capable of near-perfect performance on the easiest condi-

tions, even though most analyses ought to focus on the

difficult ones.1 Along with selecting an appropriate task

structure (e.g. 2-alternative forced choice) [3��,18] and

normative modeling framework, this strategy will facilitate

an accounting of how different types of errors arise. This

issue seems particularly important for interpreting large-

scale, exploratory studies, which may be more likely to zero

in on features of neural activity that end up being red

herrings due to uncontrolled behavioral variables.

Care about time

Time is fundamental to cognition, not only in the explicit

way in which it supports abilities like learning and pre-

diction, but more generally for structuring and regulating

internal processes. The real world is not partitioned into

discrete trials [13��], so the brain has evolved to imple-

ment rules for terminating or switching between process-

es in the absence of external cues. In many cases, simply

measuring the time it takes subjects to respond can be a

powerful constraint for models of the internal process

governing behavior [19–21]. Most importantly for the

present topic, response-time (RT) tasks [22,23] are often

the best way to identify the relevant time window(s) for

analysis of neural data.

For example, many types of decisions involve the accu-

mulation of evidence up to a threshold, or bound [24]. To

study this process and its neural correlates it is essential to

demonstrate behaviorally that the subject is indeed accu-

mulating evidence. With well-trained subjects and an

appropriate balance between reward and punishment

(e.g. to discourage fast guessing), a choice-RT design

allows the experimenter to analyze neural data restricted

to the epoch of decision formation, barring sensory and

motor delays.

In cases where RT measurements are not attainable or

inappropriate for the task, other temporal constraints can be

quite useful. One approach is to ‘compel’ subjects to

initiate the motor response at a specific time [25],

even — remarkably — before the sensory information for

the decision becomes available [26]. These designs help to

isolate the decision process from motor preparation and

other variables such as the speed-accuracy trade-off. Alter-

natively, one can embrace this trade-off and simply vary the

stimulus duration, using accuracy as a function of time to

infer the presence of a bound and to estimate the time

window of accumulation [27,28]. To promote engagement

and discourage procrastination, it is often advisable to draw

durations from a distribution with an early peak and a long
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1 Indeed concentrating the bulk of trials on difficult conditions (e.g.,

varying discriminability on a logarithmic scale) can be an effective way

to ensure sufficient behavioral variability for testing models of the

underlying process. This strategy also maximizes one’s sensitivity for

detecting differences between conditions — or effects of causal manip-

ulations — that may be subtle but nonetheless provide key insights.
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