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Neurons often respond to diverse combinations of task-

relevant variables. This form of mixed selectivity plays an

important computational role which is related to the

dimensionality of the neural representations: high-dimensional

representations with mixed selectivity allow a simple linear

readout to generate a huge number of different potential

responses. In contrast, neural representations based on highly

specialized neurons are low dimensional and they preclude a

linear readout from generating several responses that depend

on multiple task-relevant variables. Here we review the

conceptual and theoretical framework that explains the

importance of mixed selectivity and the experimental evidence

that recorded neural representations are high-dimensional. We

end by discussing the implications for the design of future

experiments.
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Introduction
The traditional view of brain function is that individual

neurons and even whole brain areas are akin to gears in a

clock. Each is thought to be highly specialized for specific

functions. This, however, does not fit with many observa-

tions, especially in higher-order cortex. For example,

training monkeys on a cognitive-demanding task engages

huge proportions of neurons in the prefrontal cortex (�40%

of randomly sampled cells). This means that training either

hijacks a huge slice of cortical tissue (and monkeys can only

learn 2–3 tasks before their brains reach capacity). Or

instead that neurons can do more than one thing. The

latter does seem to be the case. Many neurons in the

prefrontal and parietal cortices seem to be multitaskers.

They behave differently in different contexts, as if they are

members of different ensembles. This is a property we

have termed ‘mixed selectivity’. Mixed selectivity neurons

have been reported in a large body of experimental evi-

dence, but only recent investigations have started to point

out their possible importance for coding and the imple-

mentation of brain functions. Mixed selectivity can mani-

fest itself as an ‘adaptive coding’ [1] of cortical cells whose

responses are highly diverse and change over time.

These responses encode multiple task-relevant variables

that include rules, sensory stimuli identity or features, and

motor responses or decisions [2–4,5��,6��,7–9,10�,11�,12�].
Mixed selectivity has also been reported in the hippocam-

pus, where single units can respond to multiple contextual

and episodic features [13–15,16��], and in the amygdala,

where neurons can be selective to specific combinations of

visual stimuli, temporal context and predicted reinforcers

during conditioning [4,17]). Why did the brain develop this

unexpected property? Wouldn’t it be easier for each neu-

ron or brain area to do one thing? It turns out, from a

computational perspective, mixed selectivity may be cen-

tral to complex behavior and cognition. A brain with neural

representations based on highly specialized neurons would

be hamstrung; only capable of learning a small number of

simple tasks. Mixed selectivity endows the computational

horsepower needed for complex thought and action. Here

we summarize theoretical arguments developed in the

computational neuroscience community that explain

why. We then review the experimental evidence that

supports the proposed interpretation of the computational

role of mixed selectivity.

Understanding the computational role of mixed

selectivity

Mixed selectivity neurons are selectively activated by

combinations of different task variables that cannot be

predicted by their responses to individual variables.

These neuronal responses are actually repeatable: the

neurons behave the same way in the same context, but

their selectivity is highly context-dependent. As a conse-

quence, the activity of any individual mixed selectivity

neuron doesn’t mean anything by itself. Only in the

context of other neurons it is possible to disambiguate

the information encoded by mixed selectivity neurons.

This fits with a recent update to the neuron doctrine

notion, that ensembles, not individual neurons, are the

functional unit of the nervous system [18].

However, encoding information is not enough. The in-

formation has to be explicit [19] so as to be accessible to

downstream structures. Take, for example, the retina. All
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the information needed for visual perception and recog-

nition is there. However, the known circuits that are

capable of reading it out in any useful way (such as the

visual system) are overly complex. To determine if mixed

selectivity representations are useful in terms of making

information accessible to further processing stages, we

need a yardstick to determine what sort of representations

neural circuits can reasonably interpret. For this, we can

turn to artificial neural networks. Simply put, if an artifi-

cial network based on simplifying biological principles

can read out the relevant information, we assume the

brain can too. A conservative measure would be a linear

readout because it can be easily implemented as a weight-

ed sum and threshold operation by individual units of an

artificial network.

To understand the advantage of encoding information in

a population of neurons with mixed selectivity to non-

linear combinations of factors rather than a population of

highly specialized neurons (what we’ll call ‘pure selec-

tivity’ neurons), consider Figure 1a. Each of the axes

represents the firing rate of a different neuron, each one

showing linear tuning to one factor or a linear combina-

tion of two factors. In other words, neurons without

nonlinear mixed selectivity. Neuron 1 in the figure,

whose firing rate is denoted by f1, is selective to sound

in such a way that its activity increases linearly with

sound intensity; neuron 2 is selective to visual inputs

such that its activity increases linearly with visual con-

trast; the activity of neuron 3 is linearly related to either

of those factors or a linear combination of the two factors

(linear mixed selectivity). The four points represent the

responses of the three neurons (response vectors) in four

different conditions (meaning four different combina-

tions of the factors). The task is to respond in one way to

two of the combinations (shown in red) and in another

way to the other two combinations (yellow). Because the

neurons’ firing has only a linear relationship to the two

factors, these points are on a plane. A linear readout

would need to find a plane that separates the task

conditions of interest (red from yellow). But with linear

neural tuning, one cannot find a linear readout that can

separate yellow from red. One could find a readout that

separates one larger factor from the rest, such as all

conditions with loud sounds or low contrast, but it is

not possible to separate different combinations of high

and low signals.
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(a), (b) Low and high-dimensional neural representations. The activity of

a neuronal population of three neurons is represented as a point

(visualized as a sphere) in the space of all possible patterns of activity.

The three axes represent the firing rates fk (k = 1, 2, 3) of the three

neurons. The four spheres represent the population responses in four

distinct experimental conditions (e.g. the responses to four sensory

stimuli). The dimensionality of the neural representations is the minimal

number of coordinate axes that are needed to specify the position of

all points. (a) The points lie on a plane and hence they ‘live in a low

dimensional space’ (2D). (b) A high-dimensional neural representation:

same as in panel (a), but now the four points representing the sensory

stimuli are no longer coplanar and they span three dimensions. This

representation has the maximal dimensionality. In (a) a linear readout

cannot be trained to separate the red from the yellow points as they

all lie on a plane. This is because a linear readout can be trained only

if there exists a plane (a hyperplane in higher dimensional spaces) that

separates the red from the yellow points, which is clearly not the case

here. This is a prototypical case of non-linear separability, and is

equivalent to the well-known exclusive or (XOR) problem. It becomes

possible to separate the yellow from the red points in (b), where the

four points define a tetrahedron. As this geometrical arrangement

gives the maximal dimensionality, all possible colorings of the three

points are implementable by a linear readout. (c), (d) Dimensionality

reduction can improve generalization. (c) Each shaded ellipse

represents the distribution of response vectors in one of two specific

conditions due to trial-to-trial noise. The centers of the clouds

corresponding to the mean firing rates are on a line, but the points of

the clouds are distributed across all two dimensions. In the example,

the ellipses are elongated along the direction orthogonal to the black

line that joins the centers of the clouds, indicating that noise is

particularly high in that particular direction. Due to finite sampling, we

might not be able to correctly estimate this noise structure, and this

could result in a suboptimal readout. Say for instance that we were to

train a linear readout only on the six points represented by the circles

in the figure. In that case the resulting classifier (represented by the

yellow separating line) would be clearly suboptimal with respect to

the overall distributions and would misclassify a considerable fraction

of response vectors. A way to limit this finite sampling problem is to

reduce dimensionality. In (d) the six points that were used to train the

classifier are projected onto the dotted black line, the direction that

discriminates between the two classes. Now, even with the limited

sample of only six points it is possible to infer a separating hyperplane

that would result in an optimal separation between the overall

distributions.
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