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Propelled by advances in biologically inspired computer vision

and artificial intelligence, the past five years have seen

significant progress in using deep neural networks to model

response patterns of neurons in visual cortex. In this paper, we

briefly review this progress and then discuss eight key ‘open

questions’ that we believe will drive research in computational

models of sensory systems over the next five years, both in

visual cortex and beyond.
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Any scientific development of long-term value opens up

as many new questions as it answers. This is certainly the

case with recent progress in building deep neural network

models of visual cortex. In this piece, our goal is to briefly

describe these recent advances, and to outline what we

consider to be the most interesting open problems in

cortical modeling, both in vision and beyond. We focus is

on questions that will require both cutting-edge algorith-

mic developments as well as next-generation neurosci-

ence and cognitive science experiments.

Brief review of recent progress
Starting with the seminal ideas of Hubel and Wiesel, work

in visual systems neuroscience over the past 60 years has

shown that the ventral visual stream generates invariant

object recognition behavior via a hierarchically-organized

series of cortical areas that encode object properties with

increasing selectivity and tolerance [1�,2–5]. Early visual

areas, such as V1 cortex, capture low-level features such as

edges and center-surround patterns [6�,7]. In contrast,

neural population responses in the highest ventral visual

areas, inferior temporal (IT) cortex, can be used to decode

object category, robust to significant variations present in

natural images [8–10]. The featural content of mid-level

visual areas such as V2, V3, and V4 is less well understood,

but these areas appear to contain intermediate computa-

tions between simple edges and complex objects, along a

pipeline of increasing receptive field sizes [1�,11–18].

Many of these observations can be captured mathemati-

cally via class of computational architectures known as

Hierarchical Convolutional Neural Networks (HCNNs),

a generalization of Hubel and Wiesel’s simple and com-

plex cells that has been developed over the past 30 years

[19��,20�]. HCNN models are composed of several reti-

notopic layers combined in series. Each layer is very

simple, but together they produce a deep, complex trans-

formation of the input data—in theory, like the transfor-

mation produced in the ventral stream. However,

mapping a single HCNN model to ventral stream neural

data has proven extremely challenging [12], in part because

subtle parameter changes (e.g. number of layers, local

receptive field sizes, &c) can dramatically affect a model’s

match to neural data [21,22]. Recent work in visual cortex

seeks to go beyond this powerful but broad-stroke under-

standing to identify concrete predictive models of ventral

cortex, and then use these models to gain insight inacces-

sible without large-scale computational precision.

A key aspect of this approach has been performance-based
optimization, in which the parameters of a large multi-

layer neural networks are chosen to optimize the net-

works’ performance on a high-level, ecologically valid

visual task [23�]. Leveraging computer vision and ma-

chine learning techniques, together with large amounts of

real-world labelled images used as supervised training

data [24��,25,26�], HCNNs have been produced that

achieve near-human-level performance on challenging

object categorization tasks [27].

Intriguingly, even though these networks are not directly

optimized to fit neural data, their top hidden layers are

nonetheless highly predictive of single-site neural

responses as well population-level representations in IT

cortex both in electrophysiological [23�,28], and fMRI data

[29�,30]. Specifically, model units from the highest hidden

layers of these performance-optimized HCNN can be

linearly combined to produce synthetic ‘neurons’ that

predict the image-by-image response patterns of sites in

IT cortex. Moreover, the population of these synthetic

neurons closely matches the representational dissimilarity
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matrices (RDMs, [31]) of the macaque and human IT

populations. These deep, performance-optimized neural

networks have thus yielded the first quantitatively accu-

rate, predictive model of the IT population response.

Moreover, high-throughput computational experiments

evaluating thousands of HCNN models on both task

performance and neural-predictivity metrics, have found

a strong correlation between performance of high-level

object recognition tasks and ability to explain IT cortical

spiking data [23�]. The predictive power of these models

is driven not just by categorization performance alone, as

ideal observer models with perfect access to object iden-

tity do not themselves predict IT neural response pat-

terns nearly as well as the hierarchical neural network

units [23�].

Critically, these HCNN models are mappable not only to

IT, but also to other levels of the ventral visual stream.

Lower model layer filter weights resemble Gabor wave-

lets and are effective models of fMRI voxel responses in

V1 voxel data [29�,30]. Along the same lines, intermediate

HCNN layers are predictive of neural responses in V4

cortex [23�]. In other words: combining two general

biological constraints—the behavioral constraint of rec-

ognition performance, and the architectural constraint

imposed by the HCNN model class—leads to greatly

improved models of multiple layers of the visual sensory

cascade. An additional benefit of this approach is that each

layer of the HCNN is a basis set for its corresponding

cortical area, from which large numbers of IT-, V4- or V1-

like units can be generated. A common assumption in

visual neuroscience is that understanding the qualitative

structure of tuning curves in lower cortical areas (e.g.

gabor conjunctions in V2 or curvature in V4 [32]) is a

necessary precursor to explaining higher visual cortex.

These recent results show that higher-level constraints

can yield quantitative models even when bottom-up

primitives have not yet been identified.

The mapping between neural networks and cortical neu-

ral responses is still far from perfect. However, these

recent results are encouraging, and they advance the

understanding of the ventral stream in at least two new

ways. First, the predictive accuracy of these models

suggests that the principles of cortical processing may

be best described at the level of architectural statistics

(rather than precise wiring patterns), learning rules (rather

than descriptors of tuning curves), and ethological task

goals (rather than information transmission). Second,

because models derived from this approach are both

accurately predictive and generative, they act as hypoth-

esis generators that can be richly interrogated to explore

key open questions and enable the rational design of

neuroscience experiments to answer those questions.

Below we list eight exciting open questions that are

now approachable from this new vantage point.

Why is IT cortex heterogenous at large spatial
scales?
IT cortex is not a single monolithic computational mass

in which output features are randomly intermixed across

the cortical surface, but instead is likely to contain

multiple retinotopic areas, with posterior IT, central

IT, and anterior IT areas performing potentially differ-

ent computations [1�]. It is also now known that spe-

cialized face, place, body, and color-preferring regions at

the multiple-millimeter scale are found in each of these

IT areas [33–36]. Are these the only regions? If so, why

these and not others? How do the regions arise in the

first place? Understanding this heterogeneity with

computational models has two components: first, iden-

tifying whether and how the observed distributions of

unit selectivities arise, independently of their spatial

clustering; and second, explaining the observed spatial

clustering.

Existing HCNN models could likely be used to gener-

ate detailed predictions about the unit distributions. A

basic question is: to what extent are the existence of

apparently specialized populations of units (e.g. face-

selective units) strongly dependent on the semantic

content of the training data of the neural networks?

Will standard neural network model approaches yield

observed unit populations if trained on datasets with a

mix of semantic content close to that experienced by

humans during development (e.g. a large fraction of

faces)? How sensitive are unit selectivity distributions

to this semantic content?

The second question, about spatial clustering, will re-

quire a more substantial extension of the HCNN frame-

work, since those models make no specific predictions

about how their units are to be mapped to the two-

dimensional cortical sheet. It is possible that using a

simple self-organizing map approach [37] to cluster in

space units with similar feature tunings would explain a

large fraction of the spatial structure in IT. However,

there is some evidence that clustering may not be along

purely geometric or featural lines—for example, body-

preferring patches arise near face-preferring patches even

though there is no obvious geometric similarity between

these two categories [38]. If the known regions do not

emerge in these types of models, it will be important to

understand what additional principles are required to

build them. If they do, it will also be of interest to search

for new model-predicted regions that could subsequently

be confirmed or falsified using primate fMRI and electro-

physiolgy experiments.

Which visual properties are explicitly encoded
in intermediate ventral stream areas?
Intermediate visual areas such as V2 and V4 have

proven especially hard to understand because, unlike

V1 and IT, they are removed both from low-level image
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