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Technological advances in experimental neuroscience are

generating vast quantities of data, from the dynamics of single

molecules to the structure and activity patterns of large

networks of neurons. How do we make sense of these

voluminous, complex, disparate and often incomplete data?

How do we find general principles in the morass of detail?

Computational models are invaluable and necessary in this

task and yield insights that cannot otherwise be obtained.

However, building and interpreting good computational models

is a substantial challenge, especially so in the era of large

datasets. Fitting detailed models to experimental data is

difficult and often requires onerous assumptions, while more

loosely constrained conceptual models that explore broad

hypotheses and principles can yield more useful insights.
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Introduction
By nature, experimental biologists collect and revere

data, including the myriad details that characterize the

particular system they are studying. At the [same time], as

the onslaught of data increases, it is clear that we need

tools that allow us to crisply extract understanding from

the data that we can now generate. How do we find the

general principles hiding among the details, and how do

we understand which details are critical features of a

process, and which details can be approximated or ig-

nored while still permitting insight into an important

biological question? Intelligent model building coupled

to disciplined data analyses will be required to progress

from data collection to understanding.

Computational models differ in their objectives, limita-

tions and requirements. Conceptual models examine the

consequences of broad assumptions. These kinds of

models are useful for conducting rigorous thought experi-

ments: one might ask how noise impacts latency in a

forced choice between multiple alternatives [1], or how

network topology determines the fusion and rivalry of

visual percepts [2]. While conceptual models must be

constrained by data in the sense that they cannot violate

known facts about the world, they do not strive to assimi-

late or reproduce detailed experimental measurements.

Phenomenological data-driven models aim to capture details

of empirically observed data in a parsimonious way. For

example, reduced models of single neurons [3,4] can

often capture the behavior of neurons, but with simplified

dynamics and few parameters. These kinds of models are

useful for understanding ‘higher level’ functions of a

neural system, be it a dendrite, a neuron or a neural

circuit [5��] that, in the appropriate context, are indepen-

dent of low-level details. Used carefully, they can tell us

biologically relevant things about how nervous systems

work without needing to constrain large numbers of

parameters. Detailed data-driven or ‘realistic’ models at-

tempt to assimilate as much experimental data as are

available and account for detailed observations at the

same time. Successful examples might include detailed

structural models of ion channels that capture voltage-

sensing and channel gating [6], or carefully parameterized

models of biochemical signaling cascades underlying

long-term potentiation [7]. With notable exceptions,

models of this kind are often the least satisfying, as they

can be most compromised by what has not been measured

or characterized [8��].

How should we approach computational modeling in the

era of ‘big data’? The non-linear and dynamic nature of

biological systems is a key obstacle for building detailed

models [8��,9��] even when large amounts of data are

available. For example, even well-characterized neural

circuits such as crustacean CPGs that have full connec-

tivity diagrams have not, to date, been successfully mod-

eled in a level of detail that incorporates all of what is

known about the synaptic physiology, intrinsic properties

and circuit architecture [10]. As a consequence, there is

still a big role for conceptual models that tell investigators

what kinds of processes may underlie the data [11], or,

more importantly, what potential mechanisms one should

rule out [12,13�].

Relating data to models
The Hodgkin-Huxley [14] model stands almost alone in

its level of impact and in the way it achieved a more-or-

less complete fit of the data. In hindsight their success

came from extraordinarily good biological intuition about

how action potentials are generated and a clever choice of
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experimental preparation. Their model revealed funda-

mental principles of how a ubiquitous phenomenon —

the spike, or action potential — resulted from few pro-

cesses, namely two voltage-dependent membrane cur-

rents mediated by separate ionic species.

By contrast, the success of subsequent attempts to fit and

model the biophysics of more complex neuronal conduc-

tances, neurons and circuits has been less dramatic —

although insight into the roles of specific currents in

neuronal dynamics has certainly been achieved

[6,14,15,16�,17,18]. Understanding why this is the case

requires investigators to step back and view the problem

in a general setting. Biological systems are assembled

from many component enzymes, signaling molecules and

cellular structures. Modeling these components and their

interactions produces complex nonlinear dynamical sys-

tems with multiple parameters for each component. For

example, even if one specifies quite rigidly the desired

output of a neuronal network, the underlying parameters

that can give rise to these properties is weakly constrained

as multiple solutions to neuronal and network dynamics

are found [19,20]. Subsequent work, informed by this

general finding, explored families of models with param-

eters scattered over plausible ranges [21,22,23,24�]. Al-

though these studies abandoned the idea of finding

unique fits to data, they nonetheless revealed important

principles about how specific combinations of conduc-

tances contribute to neuronal and network behavior

[22,23], and how temperature-robust neuronal function

might emerge in cold-blooded animals that experience

significant changes in temperature [21,24�].

There are fundamental reasons why it is challenging to fit

large numbers of parameters in biological models [9��,25].

First, the models are typically nonlinear, so the relation

between the parameters and the output can be compli-

cated and many-valued. Averages of measured parame-

ters can give rise to non-observed behavior [26] and

models can be exquisitely sensitive to measured param-

eters [27–30]. The value of averaging as a means of

combating experimental noise might thus be obviated

by the possibility that the average values are not valid

parameter combinations themselves. Second, biological

systems have degenerate pathways and components,

meaning that properties and functions of structurally

distinct components overlap. While this confers robust-

ness to the systems themselves, it means that models can

be remarkably insensitive to many combinations of pa-

rameters [5��,21–23,27,29–31]. This ‘sloppy’ property of

biological systems is well-documented in systems biology

[8��] and neuroscientists may benefit from a wider appre-

ciation of the tribulations and successes of model building

in this sister field [32].

Sloppiness (Figure 1) means that models with large num-

bers of parameters exhibit relatively few sensitive

directions in local regions of parameter space, although

these directions are not generically aligned with parame-

ter axes. Instead, the sensitive (and insensitive) directions

are comprised of mixtures of parameters (Figure 1c),

meaning that performance of a detailed model will be

severely compromised by poor measurement, or igno-

rance of even a single parameter [8��]. A recent, elegant

modeling study of oculomotor integration [5��] revealed a

handful of sensitive directions in the high-dimensional

parameter space of a complex neuronal circuit model

(Figure 1d). The model permitted fresh insight into

the trade-offs between structural and functional proper-

ties of a circuit and did so by constraining model behavior

rather than measured parameters. As this study illustrates,

useful insight into circuit function can be obtained from

phenomenological matching of the overall model behav-

ior to experimental data, provided the non-sloppy, or

‘stiff’, parameter combinations are identified [33].

A third reason for the difficulty of the ‘fitting problem’

arises because biological systems are intrinsically variable

[34]. This variability is well-appreciated in the context of

single neuron parameters, where neurons with highly

stereotyped properties exhibit surprisingly large variabil-

ity in their membrane conductance expression [20,35–
38]. High variability is present wherever one looks,

whether it is the synaptic connectivity of well-defined

neural circuits [39–42] or the behavior of entire animals

[43]. As a consequence, the number of valid, distinct

parameter sets — should they be accessible — can equal

the number of biological repeats of an experiment. This

kind of variability is not noise; it represents genuinely

different parameter combinations that the biological sys-

tem has found. For this reason, understanding the regula-
tory logic of the nervous system is of fundamental

importance [44��].

In an age when increasingly voluminous and complex

datasets are demanding interpretation, these fundamen-

tal model-fitting problems are sobering. However, there

are direct means of taming these difficulties by exploiting

the resolution and high-dimensionality of the data them-

selves. An elegant analysis of the requirements for fitting

a multicompartment model [31] showed that if one could

access, at high temporal resolution, the membrane voltage

of each compartment in a neuron, then one can recover

the densities of multiple voltage-gated conductances —

providing the identity and kinetics of the conductances

are known. At the time this study was published, such

measurements seemed impractical. Nearly 10 years later,

we are on the verge of being able to make such measure-

ments thanks to new molecular tools and improved mi-

croscopy.

Advances in statistical methods and fitting algorithms are

accompanying advances in data collection. Many of these

exploit fast computers and numerical methods such as
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