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The goal of the Human Brain Project is to develop, during the

next decade, an infrastructure capable of simulating a draft

human brain model based on available experimental data. One

of the key issues is therefore to integrate and make accessible

the experimental data necessary to constrain and fully specify

this model. The required data covers many different spatial

scales, ranging from the molecular scale to the whole brain and

these data are obtained using a variety of techniques whose

measurements may not be directly comparable. Furthermore,

these data are incomplete, and will remain so at least for the

coming decade. Here we review new neuroinformatics

techniques that need to be developed and applied to address

these issues.
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Introduction and background
A key goal of the 1 billion euro, 10 year Human Brain

Project (HBP) is to build a scaffold model of the human

brain. This will enable the global community iteratively

build and refine whole brain models, starting from the

mouse and working towards the human brain, which is

about a thousand times larger. Different teams of

researchers will each deal with different sets of chal-

lenges. One set of challenges is to develop the hardware

and software to make it possible to simulate such a large-

scale model, store and analyze its output, and control the

simulation. Another set of challenges is to fully specify

the computational model that needs to be simulated, and

identify key missing data, which is the topic of this

review. When these challenges are met, the HBP infra-

structure will provide the community with new tools to

accelerate the understanding of the brain in health and

disease. The HBP approach can be seen as neuroscience

data integration through model building. The idea is that

only by building an integrated model will neuroscientists

be able to find out whether there is missing data and, if so,

determine an experimental strategy to measure it directly

or use a predictive neuroinformatics approach (see below)

to infer it.

Simulation of the brain models will occur at different

scales and levels of abstraction. The cellular-level bio-

physical simulation is in simplified terms the numerical

integration of a set of coupled (partial) differential equa-

tions. These equations, their parameters, and their initial

conditions, need to be fully specified to run the simula-

tion. For instance, there are differential equations that

describe the time evolution of the membrane potential

and ionic concentrations as a function of spatial location

within a neuron [1,2]. Other equations describe the

molecular cascades inside the cell [3], such as those

involving transcription and translation into proteins

[4,5] that are, for instance, necessary to lay down memo-

ries [6]. The general form of the equations is well estab-

lished, and even though there may be discussion on what

level of simplification is acceptable, the main challenge is

to populate the model parameters with reasonable esti-

mates.

To obtain the necessary data a three-pronged strategy is

needed. First, integrate existing data from different labs.

Second, predict missing data that have not (yet) been

measured. Third, increase the amount of available exper-

imental data through new molecular neurobiology tech-

niques and industrial neuroscience approaches (i.e. high

throughput). A key example of this approach is the work

by the Allen Institute for Brain Science (AIBS).

The data integration challenge
The information constraining the HBP model comes from

diverse sources and is obtained using different experi-

mental techniques. Hence, for the same basic assertion,

say the likelihood of a connection between two neurons in

area A and B, there are multiple sources of data, each

potentially giving a different answer. These data need to

be integrated. A key problem is the representation of

information in such a way that they are comparable and so
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that their reliability and precision can be quantified and

taken into account.

A group of researchers working in the same lab knows the

experimental settings used when measurements are

made. These measurements are stored in data files, most

likely without documentation of what the units are, or

what preprocessing (filtering) has been done. Information

regarding sampling rates and other parameters might be

stored separately (for instance, written in a lab book) or

assumed to be the default setting specified in the proto-

col. The data will be subsequently analyzed using tools

bundled with the experimental equipment or lab-specific

user-written code. It will be stored in another file, without

explicitly mentioning these post-processing steps and

their parameters. This set up makes sense within the

lab, but it means that the data are practically useless

outside the lab, because the metadata — the additional

information about the experiments — is missing. Further,

standardization of the metadata is required to assure

correct interpretation. Hence, an ontology of the concepts

describing the data and measurement parameters needs

to be developed. There are ontologies for neuroscience

concepts, collected in the Neuroscience Information

Framework (NIF) [7], but they do not yet cover the

necessary experimental and analysis protocols in a com-

prehensive way. When, for instance, axonal projection

patterns are determined using tracing experiments, the

protocol can be structured in different modules, each of

which can be characterized by well-defined parameters

out of an ontology or controlled vocabulary

(Figure 1a). When the data are subsequently stored in

a database and referenced relative to a standard atlas, this

information can be easily accessed by other researchers

[8] (Figure 1b).

Predictive neuroinformatics
Predictive neuroinformatics aims to fill in missing data

based on existing data and general principles. It naturally

builds on methods developed in other fields where similar

problems have been encountered. For instance, during

clinical trials, for a given subject, sometimes only a part of

the measurements are conducted. This leads to incom-

plete data, with missing entries for particular subjects,

which need to be filled out using so-called imputation

techniques [9]. One can consider these data as a matrix,

where each row represents a subject and each column a

feature. Microarray experiments can also be expressed as

a matrix, where the rows represent conditions and the

columns the expression level for each gene [10], or for

genome wide association studies (GWAS) where the

genotypes of a single nucleotide polymorphism (SNP)

are placed in a matrix, with the row representing the

subject and the column the SNP location [11]. The empty

elements in matrix can be filled by replacing each empty

element by the mean value of the corresponding non-

empty elements, but more advanced techniques are

available [10,12,13]. A recent approach, directly applica-

ble to neuroscience, is matrix completion [14,15]. This

approach assumes that the data matrix is comprised of a

sum of a low-rank matrix and a sparse matrix [16]. The

solution for this problem resembles the well-known LAS-

SO procedure for regression [17], in which an L1 (i.e.

absolute value) penalty term on the regression weights is

added to the L2 loss function (i.e. squared difference).

This shrinks the weights to zero, with those smaller than a

specific value made exactly zero. In the matrix version,

the low rank part is found by applying a singular value

decomposition (SVD) and shrinking the singular values to

obtain, after reconstitution of the components with the

new singular values and after a number of iterations, the

best fitting low rank matrix [18,19].

The wiring diagram of the nervous system in Caenorhab-
ditis elegans has been determined [20,21], and the gene

expression profile of each cell has also been measured and

made publically available (http://www.wormbase.org).

Analyses reveal that the expression profile can success-

fully predict the absence or presence of a synapse [22,23].

For the mouse, gene expression patterns [24] and meso-

scale connectivity [25��] have been made publicly avail-

able by AIBS. (Note: the AIBS meso-connectome would

be more appropriately referred to as macro-scale connec-

tivity since currently it is at the level of brain areas rather

than cell populations.) When a similar analysis was ap-

plied at the level of brain areas rather than individual

cells, it revealed that the connectivity pattern was to a

large extent predictable by areal patterns of expression

[26,27]. This means that when gene expression patterns

are available, but connectivity data are not, the connec-

tivity can still be predicted.

Experimental sources of data to constrain the
model
Brain areas

To build the brain model, the different brain areas need to

be defined (a parcellation), their typical size determined, as

well as the density of each cell type within that area and the

distribution across substructures (layers, subnuclei). A

number of brain parcellations have been proposed, each

based on different criteria, such as cytoarchitecture or the

density with which receptors are expressed [28]. Recently,

progress has been made with data-driven approaches to

define brain areas. As mentioned above, AIBS has made

available an atlas of transcription patterns in the mouse

brain [24]. Each voxel was characterized by a vector, which

contained the strength of expression of each of the ana-

lyzed genes. Nearby voxels, likely belonging to the same

area, should also have a similar expression pattern. When a

clustering procedure was applied to these vectors a par-

cellation emerges [29��] (Figure 2d), which when 60 or

more clusters are sought, resembles parcellations based on

cytoarchitecture in microscopic sections (Nissl stains) or

MRI contrast [30,31] (Figure 2e).
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