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Technological advances have dramatically expanded our

ability to probe multi-neuronal dynamics and connectivity in the

brain. However, our ability to extract a simple conceptual

understanding from complex data is increasingly hampered by

the lack of theoretically principled data analytic procedures, as

well as theoretical frameworks for how circuit connectivity and

dynamics can conspire to generate emergent behavioral and

cognitive functions. We review and outline potential avenues

for progress, including new theories of high dimensional data

analysis, the need to analyze complex artificial networks, and

methods for analyzing entire spaces of circuit models, rather

than one model at a time. Such interplay between experiments,

data analysis and theory will be indispensable in catalyzing

conceptual advances in the age of large-scale neuroscience.
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‘Things should be as simple as possible, but not simpler.’
– Albert Einstein.

Introduction
Experimental neuroscience is entering a golden age

marked by the advent of remarkable new methods en-

abling us to record ever increasing numbers of neurons [1–
5,6�], and measure brain connectivity at various levels of

resolution [7–10,11�,12–14], sometimes measuring both

connectivity and dynamics in the same set of neurons

[15�,16]. This recent thrust of technology development is

spurred by the hope that an understanding of how the

brain gives rise to sensations, actions and thoughts will

lurk within the resulting brave new world of complex

large-scale data sets. However, the question of how one

can extract a conceptual understanding from data remains

a significant challenge for our field. Major issues involve:

(1) What does it even mean to conceptually understand

‘how the brain works?’ (2) Are we collecting the right

kinds and amounts of data to derive such understanding?

(3) Even if we could collect any kind of detailed measure-

ments about neural structure and function, what theoret-

ical and data analytic procedures would we use to extract

conceptual understanding from such measurements?

These are profound questions to which we do not have

crisp, detailed answers. Here we merely present potential

routes towards the beginnings of progress on these fronts.

Understanding as a journey from complexity
to simplicity
First, the vague question of ‘how the brain works’ can be

meaningfully reduced to the more precise, and proximally

answerable question of how do the connectivity and

dynamics of distributed neural circuits give rise to specific

behaviors and computations? But what would a satisfac-

tory answer to this question look like? A detailed, predic-

tive circuit model down to the level of ion-channels and

synaptic vesicles within individual neurons, while re-

markable, may not yield conceptual understanding in

any meaningful human sense. For example, if simulating

this detailed circuit were the only way we could predict

behavior, then we would be loath to say that we understand
how behavior emerges from the brain.

Instead, a good benchmark for understanding can be

drawn from the physical sciences. Feynman articulated

the idea that we understand a physical theory if we can say

something about the solutions to the underlying equa-

tions of the theory without actually solving those equa-

tions. For example, we understand aspects of fluid

mechanics because we can say many things about specific

fluid flows, without having to numerically solve the

Navier–Stokes equations in every single case. Similarly,

in neuroscience, understanding will be found when we

have the ability to develop simple coarse-grained models,

or better yet a hierarchy of models, at varying levels of

biophysical detail, all capable of predicting salient aspects

of behavior at varying levels of resolution. In traversing

this hierarchy, we will obtain an invaluable understanding

of which biophysical details matter, and more important-

ly, which do not, for any given behavior. Thus our goal

should be to find simplicity amidst complexity, while of

course keeping in mind Einstein’s famous dictum quoted

above.
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How many neurons are enough: simplicity and
complexity in multineuronal dynamics
What kinds and amounts of data are required to arrive at

simple but accurate coarse grained models? In the world

of large scale recordings, where we do not have access to

simultaneous connectivity information, the focus has

been on obtaining a state-space description of the dy-

namics of neural circuits through various dimensionality

reduction methods (see [17] for a review). This body of

work raises a key conceptual issue permeating much of

systems neuroscience, namely, what precisely can we

infer about neural circuit dynamics and its relation to

cognition and behavior while measuring only an infini-

tesimal fraction of behaviorally relevant neurons? For

example, given a doubling time of about 7.4 years [18]

in the number of neurons we can simultaneously measure

at single cell, single spike-time resolution, we would have

to wait more than 100 years before we can observe O(106–
109) neurons typically present in full mammalian circuits

controlling complex behaviors [19]. Thus, systems neu-

roscience will remain for the foreseeable future within the

vastly undersampled measurement regime, so we need a

theory of neuronal data analysis in this regime. Such theory

is essential for firstly guiding the biological interpretation

of complex multivariate data analytic techniques, second-

ly efficiently designing future large scale recording

experiments, and finally developing theoretically princi-

pled data analysis algorithms appropriate for the degree of

subsampling.

A clue to the beginnings of this theory lies in an almost

universal result occurring across many experiments in

which neuroscientists tightly control behavior, record

many trials, and obtain trial averaged neuronal firing rate

data from hundreds of neurons: in such experiments, the

dimensionality (i.e. number of principal components re-

quired to explain a fixed percentage of variance) of neural

data turns out to be much less than the number of

recorded neurons (Figure 1). Moreover, when dimension-

ality reduction procedures are used to extract neuronal

state dynamics, the resulting low dimensional neural

trajectories yield a remarkably insightful dynamical por-

trait of circuit computation (e.g. [20,21,22�]).

These results raise several profound and timely ques-

tions: what is the origin of the underlying simplicity

implied by the low dimensionality of neuronal record-

ings? How can we trust the dynamical portraits that we

extract from so few neurons? Would the dimensionality

increase if we recorded more neurons? Would the por-

traits change? Without an adequate theory, it is impossi-

ble to quantitatively answer, or even precisely formulate,

these important questions. We have recently started to

develop such a theory [41,42]. Central to this theory is the

mathematically well-defined notion of neuronal task com-

plexity (NTC). Intuitively, the NTC measures the vol-

ume of the manifold of task parameters (see Figure 2a for

the special cases of simple reaches) measured in units of

the neuronal population autocorrelation scale across each

task parameter. Thus the NTC in essence measures how

many neuronal activity patterns could possibly appear

during the course of an experiment given that task

parameters have a limited extent and neuronal activity

patterns vary smoothly across task parameters

(Figure 2b). With the mathematical definition of the

NTC in hand, we derive that the dimensionality of

neuronal data is upper bounded by the NTC, and if

the neural data manifold is sufficiently randomly orient-

ed, we can accurately recover dynamical portraits when

the number of observed neurons is proportional to the log

of the NTC (Figure 2c).

These theorems have significant implications for the

interpretation and design of large-scale experiments.

First, it is likely that in a wide variety of experiments,

the origin of low dimensionality is due to a small NTC, a

hypothesis that we have verified in recordings from the

motor and premotor cortices of monkeys performing a

simple 8 direction reach task [43]. In any such scenario,

simply increasing the number of recorded neurons, with-

out a concomitant increase in task complexity will not

lead to richer, higher dimensional datasets — indeed data

dimensionality will be independent of the number of

recorded neurons. Moreover, we confirmed in motor

cortical data our theoretically predicted result that the

number of recorded neurons should be proportional to the
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Figure 1
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In many experiments (e.g. in insect [20,23–26] olfactory systems,

mammalian olfactory [26,27], prefrontal [21,22�,28–30], motor and

premotor,[31,32], somatosensory [33], visual [34,35], hippocampal [36],

and brain stem [37] systems) a much smaller number of dimensions

than the number of recorded neurons captures a large amount of

variance in neural firing rates.
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