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A major reason for disappointing progress of psychiatric

diagnostics and nosology is the lack of tests which enable

mechanistic inference on disease processes within individual

patients. The resulting inability to pursue formal differential

diagnosis has forced the field to stick to symptom-based

diagnostic schemes with limited predictive validity concerning

treatment response and clinical outcome. A promising new

approach is the use of computational modeling for inferring

mechanisms which generate observed behavior and brain

activity in psychiatric patients. However, while this

computational approach to psychiatry is rapidly gaining

attention, much work remains to be done to finesse existing

computational models, making them ‘fit for practice’ in a

clinical setting and proving their validity in longitudinal studies.

This review outlines recent methodological advances and

strategies in this regard, focusing on generative models which

infer mechanistically interpretable parameters (of

computational or physiological processes) from measured

behavior and brain activity.
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Why are computational approaches important
for psychiatry?
The present diagnostic toolkit of psychiatry does not in-

clude diagnostic tests (other than those for excluding

‘organic’ causes of brain disease) which reveal precise

mechanisms underlying a given behavioral symptom and

predict clinical outcome or guide individual treatment [1��].
This is a major reason why psychiatry has been unable to

move beyond descriptive categorizations (such as the Diag-

nostic and Statistical Manual of Mental Disorders, DSM)

which define mental diseases phenomenologically as clus-

ters of symptoms but have limited predictive validity [2��].

Some reasons for this absence of mechanistically

grounded tests are easily named. Genetics and neuroima-

ging as key methods of biological psychiatry face con-

siderable hurdles: genetics struggles with strong gene–
environment interactions, which is a likely key reason

why clinically relevant predictions based on genomic data

alone have been unsuccessful so far; cf. [3]. In contrast,

while neuroimaging has the advantage of providing read-

outs of the functional status quo of putatively symptom-

producing circuits, its measurements are indirect and

distal from the neuronal processes of interest, aggravating

the formulation of mechanistic hypotheses. One import-

ant strategy for breaking this impasse rests on the use of

‘computational’ models [4�,5��,6,7,8��]. In this review, we

consider two possible meanings of the broad term ‘com-

putational’: first, modeling mechanisms of information
processing and second, inferring physiological processes

from measurements of brain activity.

Computational approaches to psychiatry are rapidly gain-

ing attention, as demonstrated by transregional research

programs (e.g., the joint initiative by University College

London and the Max Planck Society on ‘Computational

Psychiatry and Ageing Research’, [9]), the first conference

dedicated to ‘Computational Psychiatry’ [10], and newly

founded institutions specifically dedicated to transla-

tional neuromodeling [11]. Numerous encouraging

proof-of-concept examples exist how computational mod-

eling can be applied to patients, for example [12–15]. So

far, however, so far none of these computational

approaches has been evaluated using a prospective study

design, which is essential for evaluating clinical utility.

Therefore, this review on recent advances in methods and

strategies for unlocking the translational potential of the

computational approach to psychiatry. We concentrate on

so-called ‘generative models’ which specify a joint prob-

ability distribution over all variables (observations and

parameters) and serve to infer on cognitive and physio-

logical mechanisms from measured behavior or brain

activity [4�] (see Box 1). By contrast, limited space prohi-

bits us from discussing the rich modeling literature inspired

by neuroeconomics, game theory, graph theory or machine

learning applications to psychiatric neuroimaging; for com-

prehensive review on these topics, see [16–18].

Modeling computation
The majority of existing computational treatments of

psychiatric diseases concern aberrant learning and
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decision-making as core components of maladaptive cog-

nition. While many types of such models exist, two have

found particularly widespread application to empirical

data: models of reinforcement learning (RL) and Baye-

sian inference. While originating from different theoreti-

cal roots, the two frameworks share some conceptual

links. Most importantly, as highlighted in a recent deri-

vation of RL equations from a variational approximation

to hierarchical Bayesian learning [19�], both frameworks

posit a structurally similar driving force behind learning:

prediction error (PE), weighted by learning rate (RL) or

precision/uncertainty (Bayesian theories). In this review,

we give particular emphasis to Bayesian approaches,

given that several excellent recent reviews on develop-

ments of RL exist [20–24].

One research question of particular relevance for psychia-

try concerns the difference between ‘model-free’ and

‘model-based’ systems which are supposed to mediate

habitual and goal-directed learning, respectively [25].

Simply speaking, in the former case, the PE represents

the difference between actual and expected outcomes

(e.g., a reward PE); in the latter case, the model embodies

explicit knowledge about the environment and updates

its representations by ‘state PEs’ (the difference between

implied and expected states).

This distinction has received much interest by RL

approaches in recent years. This was motivated by ideas

about potential competition between different learning

systems, for example, counter-productive Pavlovian influ-

ences on goal-directed learning [26], or a disturbance in

the balance between habitual and goal-directed learning

in obsessive–compulsive disorder [27]. An initial fMRI

study [28] found that healthy participants’ learning beha-

vior reflected both reward and state PEs, where the

former were correlated with activity in the ventral stria-

tum, consistent with many previous studies, while state

PEs were encoded by activity in parietal and prefrontal

areas. This was broadly compatible with subsequent

fMRI results [29] of ventral striatal activations by reward

PEs, while state PEs where reflected by activity in pre-

frontal areas. However, another study with a two-step

task, designed to maximally distinguish model-free and

model-based learning, showed that fMRI activity in the

ventral striatum did not purely reflect model-free learn-

ing, but a mixture of both learning forms, with proportions

identical to those which optimally explained behavior

[30��]. According to the authors, ‘these results challenge

the notion of a separate model-free learner and suggest a

more integrated computational architecture for high-level

human decision-making.’

Moving from RL to Bayesian approaches, the ‘Bayesian

brain hypothesis’ [31,32], which views the brain as con-

structing and continuously updating a generative model

of its sensory inputs (cf. Box 1), has inspired recent

modeling frameworks with considerable potential for

applications to psychiatry. For example, the ‘free-energy

principle’ [33��,34], posits that the continuous optimiz-

ation of the brain’s generative model depends on mini-

mization of free energy, a principled and tractable

approximation to surprise (see Box 2 for a formal defi-

nition). Simply speaking, this corresponds to minimiz-

ation of net prediction error (across potentially many

levels of inference) and can be achieved by either adjust-

ing one’s beliefs about the world (perception) or changing

the way one samples the world through the sensorium

(action).

This perspective has led to a series of recent theoretical

treatments of (mal)adaptive cognition, particularly with

regard to schizophrenia [4�,35,36��,37]. Moreover, it has

inspired concrete strategies for analyzing empirical data.

One such framework for practical applications is a meta-

Bayesian approach which considers the Bayesian infer-

ence (by an experimenter or psychiatrist) on Bayesian

inference processes (in the brain of a subject or patient)

that underlie the observed behavioral responses [38,39].

In this framework one models how the subject’s ‘hidden’

(internal) belief updating processes give rise to his/her

overt responses which, in turn, are observed by the

experimenter. The appeal of such a hierarchical approach

is that the experimenter’s beliefs (about the subjects’

beliefs driving the observed behavior) can be estimated

by inverting a single generative model and under the

same assumption about how Bayesian inference is imple-

mented in the brain (e.g., by free-energy minimization).

A particular implementation of such a meta-Bayesian

approach is the Hierarchical Gaussian Filter (HGF;

[19�]) which derives RL-like update equations from a

variational approximation to ideal hierarchical Bayesian

learning and contains parameters that represent the

individual’s approximation to Bayes-optimality. This
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Box 1 Generative models

A generative model defines a joint probability distribution p(y,u) over

observations (measured data y) and parameters u. It has two

components, a likelihood function p(yju) and a prior density of the

parameters p(u). It is called ‘generative’ because one can generate

synthetic data by sampling parameter values from the prior and

plugging these into the likelihood. One can thus also regard a

generative model as a ‘forward model’ from parameters to observed

data. ‘Model inversion’ refers to the opposite process: estimating the

posterior probability of the parameters, given some observed data.

Notably, by integrating out the dependency of the data on the

parameters, one obtains the ‘expected data’, that is, the marginal

likelihood or model evidence:

pðyÞ ¼
Z

pðy juÞ pðuÞ du (1)

The model evidence is a principled measure for the generalizability of

a model (i.e., its trade-off between accuracy and complexity) and is

widely used for model comparison; see [69,71].
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