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At the single neuron level, information processing involves the

transformation of input spike trains into an appropriate output

spike train. Building upon the classical view of a neuron as a

threshold device, models have been developed in recent years

that take into account the diverse electrophysiological make-

up of neurons and accurately describe their input-output

relations. Here, we review these recent advances and survey

the computational roles that they have uncovered for various

electrophysiological properties, for dendritic arbor anatomy as

well as for short-term synaptic plasticity.
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Introduction
The computation performed by single neurons can be

defined as a mapping from afferent spike trains to the

output spike train which is communicated to their post-

synaptic targets. This mapping is stochastic, because of

various sources of noise that include channel and synaptic

noise; and plastic, because of various sources of plasticity,

both intrinsic and synaptic.

For many years, the dominant conceptual model for

single neuron computation was the binary Mc-Culloch-

Pitts neuron [45]. In this model, the input vector is

multiplied by a weight vector, and then passed through

a threshold (see Fig. 1a). Adjusting synaptic weights and

thresholds lead to neurons being able to learn arbitrary

linearly separable dichotomies of the space of inputs [63].

This model has been conceptually tremendously useful,

but it ignores fundamental temporal and spatial proper-

ties of neurons: the complex dynamics generated by a

panoply of voltage-gated ionic currents; and the fact that

synaptic inputs are stochastic, history-dependent and

spread over a large dendritic tree. In this paper, we will

review recent advances in our understanding of how these

properties affect computation in single neurons.

Computation and dynamics: LNP/GL models
and their relationship to neuronal biophysics
Electrophysiological data in various sensory systems have

been successfully fitted by linear-non-linear-Poisson

(LNP) or generalized linear models (GLM) [65]. In the

LNP model, the inputs are first convolved linearly with a

temporal filter (also called a kernel - the L operation).

This convolution is then passed through a static non-

linearity (the N operation), yielding an instantaneous

firing rate. Finally, an inhomogeneous Poisson process

is generated from the instantaneous firing rate (the P

operation). This model is sketched in Figure 1b. In a

GLM, spikes emitted by the neuron are convolved by

another filter, and added to the input to the static non-

linearity, to account for post-spike effects such as firing

rate adaptation.

Recently, a procedure for approximating arbitrary spiking

neuron models to LNPs has been developed ([54�] — see

[31] for an alternative strategy). The idea is that the static

non-linearity corresponds to the average firing rate of the

neuron, with a stationary input and background noise

with a given statistics. The temporal filter corresponds to

the linearized firing rate (or impulse) response - how the

instantaneous firing rate responds to a small sharp pulse of

input current. Both quantities can be computed analyti-

cally (either exactly or approximately) in several popular 1

or 2 variable simplified spiking neuron models: the leaky

integrate-and-fire (LIF) model [22,59]; the exponential

integrate-and-fire (EIF) and quadratic integrate-and-fire

(QIF) models [23,60]; generalized two-variable integrate-

and-fire (GIF) models [57]; and generalized exponential

models (GEM) [58]. The interest in such simplified

integrate-and-fire-type models has been boosted by

two observations: (i) 2 variable IF models can reproduce

a wide diversity of firing patterns of real neurons

[33,51,71]; (ii) they accurately fit electrophyiological

recordings of real neurons [56,5�,26,46].

The static non-linearities and temporal filters of such

models are summarized in Figure 1c-e. In IF-type models,

the static non-linearity is a monotonically increasing, sig-

moid-shaped, function of the inputs (Fig. 1c1-e1) - note

however that non-monotonic f-I curves can be observed in

a specific class of model neurons [40] as well as in specific

types of real neurons [30]. In the sub-threshold range,
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where firing is induced by fluctuations around the mean

inputs, the gain of the transfer function strongly depends

on the amplitude of the noise. The temporal filter also

strongly depends on the noise (Fig. 1c2-e4). For strong

noise, neurons fire in a highly irregular fashion. In this

regime, one-variable IF-type models behave as low-pass

filters, with a cut-off frequency that depends on membrane

time constant, background firing rate, and spike generation

dynamics (Fig. 1c2, c3, d2, d3). Two-variable models in

which the second variable represents the dynamics of ionic

currents providing negative feedback on the membrane

potential (IH, IKs, etc) behave as band-pass filters, in a

frequency range determined by the time scales of these

intrinsic currents (Fig. 1e2, e3). For low noise, neurons are
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Figure 1
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Computational properties of single-compartment neurons. a. The classic McCulloch-Pitts neuron performs a weighted sum of its synaptic inputs (each

input i is multiplied by a synaptic weight wi ), and then a thresholding operation. b. The LNP neuron replaces the threshold by the LNP cascade: (L)

convolution with a temporal filter K(t), (N) application of a static non-linearity F, (P) generation of a Poisson process, with an instantaneous firing rate

given by F(K� input). c-d. Static non-linearities and temporal filters of selected simplified spiking neuron models. c: Leaky integrate-and-fire neuron

(LIF). d: Exponential integrate-and-fire neuron (EIF). e: Generalized exponential model (GEM). In this series of panels, the first column shows the static

non-linearity, for two different levels of noise (black, 1mV; green, 10mV). Circles indicate the points at which the temporal filters are computed in the

other columns. The second and third columns show the amplitude and phase of the temporal filter in the Fourier domain (color indicates level of noise

as in first column; full lines, firing rate of 3Hz; dashed line, firing rate of 30Hz). The fourth column shows the temporal filter (or impulse response) for the

same parameters as in the 2nd and 3rd columns.
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