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Perceptual and control systems are tasked with the challenge

of accurately and efficiently estimating the dynamic states of

objects in the environment. To properly account for uncertainty,

it is necessary to maintain a dynamical belief state

representation rather than a single state vector. In this review,

canonical algorithms for computing and updating belief states

in robotic applications are delineated, and connections to

biological systems are highlighted. A navigation example is

used to illustrate the importance of properly accounting for

correlations between belief state components, and to motivate

the need for further investigations in psychophysics and

neurobiology.
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Introduction
A key element of both perceptual and control algorithms

is the need to estimate the dynamic state of a system.

Consider the response of an animal as a potential predator

approaches. Perceptually, it becomes important to accu-

rately track the location of the predator as it nears, in order

to decide when to flee. When the animal decides to run

away, it becomes equally important to monitor the state of

its own body posture, moving limbs, and muscle torques

from noisy propioceptive feedback in order to maximize

its running speed while maintaining balance and agility.

Furthermore, a successful escape must keep track of its

position relative to the predator and make accurate future

predictions (Figure 1).

In this article, we first review some of the approaches

used to model and track states in these situations. Then,

we draw examples from engineering systems, in particu-

lar from robotics, and use these examples to motivate

some key questions that arise with respect to potential

dynamical belief state representations in neurobiology.

Robots can be viewed as artificial model systems for

understanding sensorimotor mechanisms, because their

design and construction need to address many of the

important challenges Nature had to face. Two crucial

aspects which renders robotics appropriate as model

systems are the embodiment [1] and the need

for efficient, real-time processing of massive, high-

dimensional sensorimotor data. Our objective is to com-

municate the insights we have gained with respect to

dynamic belief state representations, complementing

previous findings about Bayesian optimal decision mak-

ing and sensorimotor integration in computational

neuroscience [2–4].

State dynamics

Whether the state is the location of a predator or the

angles and velocities of the leg and arm joints, there

should be some predictive model of how the state changes

over time. The state at time t can be written as a real

valued vector~st . For example, in describing the position

of an object, the state vector could contain the coordinates

of the object in either rectilinear or polar coordinates. On

the other hand, joint angles and their associated velocities

would be described as a set of angles along with their time

derivatives in the state vector.

Here we simplify our description by considering discrete

time updates. In order to make accurate predictions, we

would like to know how the state evolves from the

previous time instant t � 1. This can be described in

terms of a motion model:

~st ¼ f ð~st�1;~at�1Þ (1)

where the dynamics depend explicitly upon the previous

state ~st�1 and action ~at�1.

A crucial issue is that the state is never directly observed.

As assumed by regular hidden Markov models (HMMs)

and partially-observable Markov decision processes

(POMDPs), information about the underlying state is

provided by observations in time, which may not fully

specify the state:

~ot ¼ gð~stÞ (2)

because the measurement function g may not be inver-

tible. An example of such measurements includes mon-

ocular vision, where the reflected light from an object is

projected upon a 2D retina array resulting in measure-

ments with an unknown depth. In legged locomotion,

information about the full body state is indirectly pro-

vided by vestibular and proprioceptive measurements,
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including readings from IMUs3 and encoders to measure

body acceleration and orientation and rotations in joints

respectively. The resulting dynamic position and orien-

tation of the whole body need to be inferred by combin-

ing both idiothetic and alleothetic information coming

from these indirect measurements.

Incorporating uncertainty

Unfortunately, there is uncertainty in both the motions as

well as measurements. Thus, we enrich our previous

model with a more complete description that incorporates

noise terms into the dynamics and measurements:

~st ¼ f ð~st�1;~at�1Þ þ ht (3)

~ot ¼ gð~stÞ þ et (4)

where the noise terms ht and et are independent random

variables.

Probabilistic representation

The noise terms can be viewed as random variables drawn

from some underlying probability distribution. Thus,

Eqs. (3) and (4) are more conveniently described in terms

of the conditional distributions of the noise terms:

~st � pð~st j~st�1;~at�1Þ (5)

~ot � pð~ot j~stÞ (6)

For instance, a state evolution with Gaussian noise and no

actions and measurements would result in Brownian

motion of the state over time. Together, (5) and (6)

specify a dynamic Bayesian graphical model as shown

in Figure 2 [5].

Belief states
According to the probabilistic view, the state ~st can be

seen as being drawn from an underlying density pð~stÞ.
This distribution is known as the belief state. Uncer-

tainty in specifying the actual state is manifested in the

entropy of the belief state. Consider the situation when

the state is the pose of an object in two-dimensional

space. The simplest specification of the pose state

would consist of three variables, the two-dimensional

translational position (xt, yt) along with the heading of

the object ut. In this case, the belief state would be a

distribution over these three components p(xt, yt, ut).

Figure 3 shows an illustration of how a potential belief

state may look at a particular time, and how it may

evolve over time.
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A successful escape from the predator must keep track of the positions

and velocities and make accurate future predictions. Here, the gazelle

corrects its original escape direction (from B to C) in order to decrease

the risk of getting caught (at A).
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Dynamic Bayesian graphical model. This model characterizes the

evolution of a hidden state ~st subject to the influence of an action ~at . At

each time step, the hidden state emits an observation ~ot . The grey area

highlights the variables involved in time step t.

Figure 3
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(a) Belief state representing possible poses, consisting of different

locations and heading angles. (b) Propagation of belief state over time.

3 IMUs (Inertial Measurement Units) are electronic devices that

measure the velocity, orientation and gravitational forces.
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