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This review considers state-of-the-art analyses of functional

integration in neuronal macrocircuits. We focus on detecting

and estimating directed connectivity in neuronal networks

using Granger causality (GC) and dynamic causal modelling

(DCM). These approaches are considered in the context of

functional segregation and integration and — within functional

integration — the distinction between functional and effective

connectivity. We review recent developments that have

enjoyed a rapid uptake in the discovery and quantification of

functional brain architectures. GC and DCM have distinct and

complementary ambitions that are usefully considered in

relation to the detection of functional connectivity and the

identification of models of effective connectivity. We highlight

the basic ideas upon which they are grounded, provide a

comparative evaluation and point to some outstanding issues.
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Introduction
Several dichotomies have proved useful in thinking about

analytic approaches to functional brain architectures.

Perhaps the most fundamental is the distinction between

functional segregation and integration. Functional segre-

gation refers to the anatomical segregation of functionally

specialised cortical and subcortical systems, while func-

tional integration refers to the coordination and coupling

of functionally segregated systems [1��]. Within func-

tional integration, two main classes of connectivity have

emerged — functional and effective connectivity. Func-

tional connectivity refers to the statistical dependence

or mutual information between two neuronal systems,

while effective connectivity refers to the influence

that one neural system exerts over another [2�,3]. This

distinction is particularly acute when considering the

different analyses one might apply to electrophysiological

or neuroimaging timeseries.

Functional and effective connectivity

Because functional connectivity is defined in terms of

statistical dependencies, it is an operational concept that

underlies the detection of (inference about) a functional

connection, without any commitment to how that con-

nection was caused. In other words, one tests for depen-

dencies between two or more timeseries, to reject the null

hypothesis of statistical independence. This is equivalent

to assessing the mutual information and testing for signifi-

cant departures from zero. At its simplest, this involves

assessing (patterns of) correlations — of the sort that

define intrinsic brain networks. An important distinc-

tion — within functional connectivity — rests on

whether dependencies are instantaneous or reflect an

underlying dynamical process, in which causes precede

consequences. This leads to the distinction between

analyses of directed and undirected functional connectivity

that do and do not appeal to temporal precedence respect-

ively. Common examples of techniques used to assess

undirected functional connectivity (dependencies) in-

clude independent components analysis [4] and various

measures of synchrony, correlation, or coherence [5].

However, we will focus on analyses of directed functional

connectivity — of which the prime example is Granger

causality (GC) [6�]. This is because coupling in the brain

is both directed and largely reciprocal (producing cyclic

graphs or networks with loops that preclude structural

causal modelling). As we will see below, GC and related

concepts such as transfer entropy (TE) rest on establish-

ing a statistical dependence between a local measurement

of neuronal activity and measurements of activity else-

where in the past.

Functional connectivity considers dependencies between

measured neurophysiological responses. In contrast,

effective connectivity is between hidden neuronal states

generating measurements. Crucially, effective connec-

tivity is always directed and rests on an explicit (para-

meterised) model of causal influences — usually

expressed in terms of difference (discrete time) or differ-

ential (continuous time) equations. The most popular

approach to effective connectivity is dynamic causal

modelling (DCM) [7–10,11��,12��]. In this context, caus-

ality is inherent in the form of the model, where fluctu-

ations in hidden neuronal states cause changes in others:

for example, changes in postsynaptic potentials in one

area are caused by inputs from other areas. The
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parameters of dynamic causal models correspond to effec-

tive connectivity — usually cast as synaptic density or

coupling parameters — that are optimised by fitting the

model to data. The notion of effective connectivity stems

from the pioneering work of Gerstein and Perkel [13] in

early attempts to interpret multivariate electrophysiologi-

cal recordings. At its inception, effective connectivity

referred to models; in the sense of the simplest possible

circuit diagrams that explain observed responses [14]. In

modern parlance, these correspond to dynamic causal

models with the greatest evidence: namely, models with

the minimum complexity that furnish an accurate expla-

nation for data (see below). In what follows, we review

recent developments in the analysis of directed functional

connectivity with GC and TE, the analysis of directed

effective connectivity with DCM and then consider the

approaches in light of each other. Figure 1 provides an

overview of recent developments in these techniques.

Granger causality and transfer entropy
The core idea behind GC is that X ‘Granger causes’ Y if X

contains information that helps predict the future of Y

better than information already in the past of Y (and in the

past of other ‘conditioning’ variables Z). The most com-

mon implementation of GC is via linear vector autoregres-

sive (VAR) modelling of timeseries data, enabling both

statistical significance testing and estimation of GC mag-

nitudes [6�,15�,16]. However, GC is not limited to this

implementation; it can use nonlinear, time-varying, and

non-parametric models [17,18]. In particular, TE [19]

represents an information-theoretic generalisation of GC

that does not require a parameterised model (is model-

free). Specifically, the TE from X to Y is zero if, and only if,

Y is conditionally independent of X’s past, given its own

past. Importantly, for Gaussian data, TE is equivalent to

GC [20��], furnishing a useful interpretation of GC in terms

of information transfer in ‘bits’. Related approaches in-

clude partial directed coherence and the directed transfer

function; see [21] for a review. Here we focus on the most

popular of these techniques, namely GC:

Following its introduction within econometrics [6�,15�],
GC has been applied in neuroscience partly because it is

simple to estimate, given (stationary stochastic) time-

series. Such data are generated by a wide range of

neuroimaging and neurophysiological methods. GC has

some useful properties including a decomposition of

causal influence by frequency [15�] and formulation in

an ‘ensemble’ form, allowing evaluation of GC between

multivariate sets of responses [22]. GC has provided

useful descriptions of directed functional connectivity

in many electrophysiological studies [23–25]. Recently,

Bosman et al. [26��] analysed electrocorticographic data

from macaque monkeys to show that ‘bottom-up’ signals

across multiple cortical regions were most prominent in

the gamma band, while ‘top down’ influences dominated

at beta frequencies — a finding that is strikingly congru-

ent with neural implementations of predictive coding

[27]. GC can also be applied to standard EEG or MEG

signals, either at the source or sensor level (following

spatial filtering to reduce the impact of volume conduc-

tion). For example, Barrett et al. [28�] used source-loca-

lised EEG to show that gamma-band GC between

posterior and anterior cingulate cortices reliably increased

during anaesthetic loss of consciousness, extending

previous results obtained using (undirected) phase syn-

chrony [29]. We will turn to this example later in the

context of DCM.

The application GC to fMRI is more controversial, given

the slow dynamics and regional variability of the haemo-

dynamic response to underlying neuronal activity [30,31];

and see ‘Pros and Cons’ below. While naı̈ve application of

GC to fMRI data is unlikely to be informative, careful

consideration of the methodological issues has permitted

some useful applications that have produced testable

hypotheses. For example, Wen et al. [32�] analysed fMRI

data obtained from a cued spatial visual attention task;

finding that GC from dorsal to ventral frontoparietal

regions predicted enhanced performance, while GC in

the reciprocal direction was associated with degraded

performance. These findings are consistent with the

notion that dorsal attentional regions mediate goal-

oriented top-down deployment of attention, while ventral

regions mediate stimulus-driven bottom-up reorienting.

In a similar paradigm, Bressler et al. [33] found that GC

from parietal to occipital areas was predictive of beha-

vioural performance. In a final and unusual example,

Schippers et al. [34] used GC of fMRI signals to analyse

directed interactions between the brains of two subjects

engaged in a social game (charades), providing novel

evidence for ‘mirror neuron system’ formulations of social

interaction. Another promising application of GC is to

intracranial local field potentials, which possess high

temporal and spatial resolution and which comprise com-

paratively few variables (as compared to fMRI voxels or

EEG sensors). An early application in this area, Gaillard

et al. [35] examined directed functional connectivity

during supraliminal as compared to subliminal visual

word processing.

Dynamic causal modelling
The basic idea behind DCM is that neural activity

propagates through brain networks as in an input-state-

output system, where causal interactions are mediated by

unobservable (hidden) neuronal dynamics. This multi-

input multi-output neuronal model is augmented with a

forward, or observation model that describes the mapping

from neural activity to observed responses. Together

neuronal and observation model comprise a full genera-

tive model that takes a particular form depending on

the data modality. The key outputs of DCM are the

evidence for different models and the posterior

parameter estimates of the (best) model, particularly
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