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A recent approach in social neuroscience has been the

application of formal computational models for a particular

social-cognitive process to neuroimaging data. Here we review

preliminary findings from this nascent subfield, focusing on

observational learning and strategic interactions. We present

evidence consistent with the existence of three distinct learning

systems that may contribute to social cognition: an

observational-reward-learning system involved in updating

expectations of future reward based on observing rewards

obtained by others, an action-observational learning system

involved in learning about the action tendencies of others, and a

third system engaged when it is necessary to learn about the

hidden mental-states or traits of another. These three systems

appear to map onto distinct neuroanatomical substrates, and

depend on unique computational signals.
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Introduction
Since the emergence of functional neuroimaging, a con-

siderable body of literature has implicated a set of brain

regions in the processes underlying human social cogni-

tion, including the posterior superior temporal sulcus

(pSTS) and adjacent temporoparietal junction (TPJ),

the amygdala, temporal poles, and medial prefrontal

cortex (mPFC) [1–4].

The past decade has also seen the application within

cognitive and systems neuroscience of a method that has

come to be known as computational or model-based

neuroimaging [5]. This approach involves correlating

the variables generated by a formal computational model

describing a particular cognitive process against neuroi-

maging and behavioral data generated by participants

performing a related cognitive task. This technique offers

the prospect of identifying not only those brain regions

that are activated during a given task, as in traditional

approaches, but also provides insight into ‘how’ a particu-

lar cognitive operation is implemented in a given brain

area in terms of the underlying computational processes.

The computational approach to neuroimaging was

brought to bear initially on the domains of value-based

learning and decision-making in nonsocial situations, as a

means of gaining insight into the computations performed

by different brain regions in learning to predict rewarding

and punishing outcomes and in using those predictions to

guide action selection [6–11]. Some of the key findings

from this work include the determination that BOLD

responses in the human striatum resemble a reward

prediction error signal that can be used to incrementally

update predictions of future reward [6,7,12], while

activity in ventromedial prefrontal cortex (vmPFC) cor-

relates with expectations of future reward for actions or

options that are chosen on a particular trial [13,14�,15].

More recently, tentative steps have been taken to extend

this approach into the social domain [16,17]. The main

objective in doing so has been to gain insight into the

nature of the computations being implemented in the brain

during social cognition, and in particular to put compu-

tational flesh on the bones of the psychological functions

previously attributed to different brain regions within the

social cognition network. In this review, we highlight two

main research questions that have been pursued to date:

the neural computations underpinning observational learn-

ing, and the neural computations underpinning the ability

to make predictions about the intentions of others.

Observational learning
In experiential learning an agent learns about the world

through direct experience with stimuli in the world and/or

by taking actions in that environment and reaping the

consequences. In observational learning, an agent learns

not through direct experience but instead by observing the

stimuli and consequences experienced by another agent, as

well as by observing the actions the observed agent per-

forms in that environment. Observational learning can

clearly be advantageous as it allows an individual to ascer-

tain whether particular stimuli or actions lead to rewarding

or punishing consequences without expending resources

foraging or being exposed directly to potential threats.

Preliminary findings suggest that similar computational

mechanisms may underpin both experiential and
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observational learning. More specifically, studies have

reported neural correlates of reward prediction error sig-

nals in the striatum [18�,19,20�] and vmPFC [18�] while

subjects learn by observing confederates receive reward

feedback in probabilistic reward learning tasks. Impor-

tantly, these signals reflect the deviation of a reward from

the amount expected given previous play, despite the fact

that the subject merely observes the receipt of this reward

by the confederate.

Although the outcomes obtained by another individual

represent a valuable source of information for an observer,

the mere choice of action made by an observee may also

influence the vicarious acquisition of instrumental

responses. These observed actions may be relevant

because they are often motivated by similar preferences

for outcome states and may therefore represent an

additional source of information regarding the optimality

of available actions [18�], or, relatedly, because reward

may be directly contingent on successful mimicry of the

actions of another agent with differing preferences over

those states [20�]. Action prediction error signals, repre-

senting deviations by an observed confederate from the

actions expected of them by the subject, may be used to

update the subject’s own behavior in computational

models of learning, and have been reported in dorsolateral

prefrontal cortex (dlPFC) [18�,20�], dorsomedial prefron-

tal cortex (dmPFC) [20�], and bilateral inferior parietal

lobule [20�]; a collection of areas that exhibit significant

interconnectivity (see [21,22]) The involvement of

dlPFC in such learning is consistent with evidence from

electrophysiological and neuroimaging studies that this

area is involved in the representation of task-relevant

contingencies and goals [23] and the manipulation of

task-relevant information in working memory [24,25].

Given that posterior parietal cortex has also previously

been implicated in attention [26–28], one possibility is

that this region contributes to learning through the allo-

cation of attention engendered by surprising or unex-

pected actions, compatible with some computational

accounts in which attention is suggested to modulate

learning [29].

Strategic learning
The studies mentioned thus far have examined how

information acquired about the experiences and actions

of other individuals can be incorporated into representa-

tions used to guide one’s own behavior. However, as

social animals we are often engaged in situations where

we need to interact with other individuals in order to

attain our goals, whether it is by co-operating or by

competing with them. In order to succeed in such situ-

ations it is often necessary to be able to understand their

intentions, and to use this knowledge to guide action

selection. At the core of this capacity is the psychological

construct known as mentalizing, in which representations

are formed about the hidden mental states and intentions

of another.

Such mentalizing processes can vary in their complexity.

Behrens et al. [10] examined a situation in which, in

contrast to the studies of Burke et al. [18], and Suzuki

et al. [20�], information from a confederate regarding the

optimal action to take varied in its reliability, because the

confederate’s interests sometimes lay in [29] deceiving

the subject. In order to perform well in this type of task, it

is prudent to maintain an estimate of the confederate’s

fidelity, to be used to modulate the influence of their

advice. Neural activity corresponding to an update signal

for such an estimate was found in anterior mPFC, as well

as in a region of temporoparietal junction.

Hampton et al. [16] studied a paradigm (Figure 1a) in

which two human subjects played in a variant of the

competitive economic game matching pennies. In this

coordination game, players choose between two actions

on each round, with one player winning if the two chosen

actions are the same, and the other if they are different.

Such a game takes on interesting dynamics with repeated

play, as players typically vie to predict their opponent’s

next choice of action while masking their own intentions,

providing the potential for the engagement of complex

mentalizing processes. To capture the learning processes

underlying action selection in this context, Hampton et al.
[16] modified an algorithm called ‘fictive play’, drawn

from the game theoretic literature [30–32]. An agent using

a fictive play algorithm iteratively updates the probability

that their opponent will choose a particular action based

on previous choices of action. There is some evidence

that, when engaged in competitive economic games

against computer opponents, nonhuman primates may

be capable of incorporating fictitious play into their action

selection, as well as more simple strategies such as Win-

Stay Lose-Switch and simple reinforcement learning [33–
35], However, using even fictitious play ignores the

danger that ones opponent is likely to be similarly adept

in tracking ones own behavior. Hampton et al. [16] there-

fore extended the fictive learning algorithm to incorporate

the effect an opponent’s predictions of ones own actions

has on their action selection, endowing the agent with a

‘secondorder’ mental state representation [3,36]. Hamp-

ton et al. [16] found that activity in vmPFC encoding the

expected value of chosen actions incorporated this sec-

ond-order knowledge, while activity in pSTS and anterior

dorsomedial frontal cortex correlated with a learning

signal that could be used to update the second-order

component of this representation (Figure 1b).

The types of learning and inference described above

involve first-order and second-order strategic reasoning,

but in principle one could engage in increasing orders of

iterative reasoning: thinking about you thinking about me

thinking you and so on. Ideally, an agent should tailor the
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