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h  i  g  h  l  i g  h  t  s

• We  introduce  an  open-source  toolbox  for  individual  detection  and  analysis  of slow  waves  in  sleep  electroencephalography.
• Novel  and  previously  applied  automatic  detection  algorithms  are  introduced  and  explored.
• Individual  slow  waves  are  detected  in  sleep  recordings  from  participants  along  a large  search-space  of  parameter  settings.
• Properties  of  detected  slow  waves  are  compared  across  parameter  settings  on  a range  of  outcome  measures  of  interest.
• Visualization  options  for  toolbox  users  are  introduced,  including  the possibility  to manual  score sleep.
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a  b  s  t  r  a  c  t

Background:  Analysis  of  individual  slow  waves  in  EEG  recording  during  sleep  provides  both  greater  sen-
sitivity  and specificity  compared  to  spectral  power  measures.  However,  parameters  for  detection  and
analysis  have  not  been  widely  explored  and  validated.
New method:  We  present  a  new,  open-source,  Matlab  based,  toolbox  for  the  automatic  detection  and
analysis  of slow  waves;  with  adjustable  parameter  settings,  as  well  as  manual  correction  and  exploration
of the  results  using  a multi-faceted  visualization  tool.
Results:  We explore  a large  search  space  of  parameter  settings  for slow  wave  detection  and  measure
their  effects  on a selection  of outcome  parameters.  Every  choice  of  parameter  setting  had  some  effect  on
at least  one  outcome  parameter.  In  general,  the  largest  effect  sizes  were  found  when  choosing  the  EEG
reference,  type of  canonical  waveform,  and  amplitude  thresholding.
Comparison  with  existing  method:  Previously  published  methods  accurately  detect  large,  global  waves
but are  conservative  and  miss  the  detection  of  smaller  amplitude,  local  slow waves.  The  toolbox  has
additional  benefits  in  terms  of speed,  user-interface,  and  visualization  options  to compare  and  contrast
slow  waves.
Conclusions:  The  exploration  of parameter  settings  in the  toolbox  highlights  the  importance  of  careful
selection  of  detection
Methods: The  sensitivity  and  specificity  of the  automated  detection  can  be improved  by  manually  adding
or  deleting  entire  waves  and  or specific  channels  using  the  toolbox  visualization  functions.  The toolbox
standardizes  the  detection  procedure,  sets  the  stage  for  reliable  results  and  comparisons  and  is easy  to
use  without  previous  programming  experience.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

For much of the 20th century sleep was considered to be a global
phenomenon of the brain, and its macro-architecture was of pri-
mary interest (Jones, 2005; Saper et al., 2005; Siegel, 2009). The past
few decades has witnessed a shift in interest to the spatial domain
and local aspects of sleep (Krueger et al., 2008; Nobili et al., 2011;
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Vyazovskiy et al., 2011; Marzano et al., 2013). Much of the research
into local patterns of sleep has used the measure of ‘slow wave
activity’ (Werth et al., 1997; Huber et al., 2004; Stadelmann et al.,
2013), reflective of the changes in the power spectra in the lower
frequencies (typically around 1–4 Hz), measured across a whole
night or single cycle of sleep. This measure is, however, under-
determined since both slow wave incidence and amplitude will
affect power.

Slow waves can originate in a small region of the cortex and then
propagate to other cortical regions based on both EEG and intracra-
nial recordings (Amzica and Steriade, 1998). Therefore, there are,
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at least, five distinct ways in which local slow wave activity could
increase or decrease (Massimini et al., 2004; Menicucci et al., 2009;
Murphy et al., 2009): 1, origins and traveling parameters remain
constant but there are local changes in the amplitudes of the slow
waves as they travel over particular regions of the cortex; 2, there
is an increase in the incidence of local waves which originate in
that particular part of the cortex; 3, slow wave origins remain dis-
tributed but more waves travel to or through a specific area of
the cortex; 4, there are local changes in the speed of propagation
resulting in a frequency shift of power spectra; 5, some particular
combination of the above factors. Notably, if any of the above mech-
anisms have opposing effects they may  cancel out in the power
spectra.

Conventional power-based methods are relatively easy to cal-
culate as the appropriate tools have already been developed and
standardized over time. Thus, results are relatively comparable
across studies, in turn leading to power spectral measures being
used repeatedly in research. Nevertheless, an examination of the
properties of individual slow waves is now also possible and can
yield an increase in specificity and sensitivity without the asso-
ciated cost of having to perform new measurements (Riedner
et al., 2007). For example, the analysis of the origin of slow waves
revealed a local increase indicative of post-sleep learning in a visual
perception task (Mascetti et al., 2013). Moreover, slopes of individ-
ual slow waves correlate with neural development (Fattinger et al.,
2014), and epileptic spike waves can impair individual slow waves
(Bölsterli Heinzle et al., 2014). The advent of parallel computing
and the lower cost of technology has made individual waveform
analysis practically feasible. However, the necessary tools for the
detection of individual slow waves, and the subsequent calcula-
tion of their traveling parameters have not yet been made freely
available, standardized, or validated. Moreover, tools have not been
made sufficiently simple or generalized so that researchers and
clinicians can easily explore their own data and have confidence
in the results while also comparing them against set standards.

Here we describe an open source toolbox with the principal
purpose of providing a reliable interface to detect and analyze
individual slow waves found in EEG sleep recordings. The tool-
box is version-controlled using git and freely available at https://
github.com/Mensen/swa-matlab. The main goal of the current arti-
cle is to introduce the main features of the toolbox for slow-wave
detection. Secondly, we use several full-night sleep recordings to
examine how a large search-space of different parameter settings
influence the detection and properties of slow waves. While this is
not intended to be an extensive overview of how to most accurately
detect slow waves, it is meant to showcase the toolbox’s functional-
ity, typical work-flow, and visualization capabilities while making
the user aware of the strengths and weaknesses of various settings
and what aspects to consider when analyzing recordings of their
own.

2. Materials and methods

2.1. Toolbox overview

2.1.1. Sleep scoring
Given that different types of waves in sleep occur during differ-

ent periods, detection can be improved by parsing the night into its
various sleep stages. To this end a user-friendly interface was cre-
ated for the manual visual scoring of sleep stages and arousal events
of high-density EEG channels. This has previously been available
primarily through proprietary software in certified sleep centers
and only once specified channels from the high-density caps had
been exported. This set of toolbox functions allows for the on-line
adjustment of displayed channels and specified references, as well

as individual channel filtering options for each channel displayed.
Navigation and sleep scoring can be performed using the mouse
or keyboard keys (e.g. left and right arrows to navigate, number
keys to indicate sleep stage). Importantly, the data used for scor-
ing can be loaded directly from the original recording and is saved
in the same file. This is a useful feature, as the file sizes for long
recordings of high-density channels are typically in the 5–20 Gb
range. This feature also reduces the number of copies necessary
while simultaneously maintaining a controlled history of process-
ing. Similarly, the scoring toolbox uses dynamic memory mapping
to load into random-access-memory (RAM) only the part of the
file that is currently displayed (e.g. 8 channels of 30 s duration).
This feature allows for the scoring of files on a typical computer
where the amount of RAM memory may  be smaller than the dataset
one needs to score. Since filtering is only applied to the displayed
portion of data, and not the raw data itself, this graphical user inter-
face (GUI) is also a good way to visualize raw recordings and mark
artifacts manually, prior to any preprocessing methods. Channel
montages and filtering options are saved within the file and can
be used with other datasets to keep the settings consistent across
participants or recording nights.

2.1.2. Wave detection
The detection of slow waves, regardless of specific settings, fol-

lows 4 key stages.

1 Calculation of the canonical wave(s).
2 Detection of individual slow waves within the canonical wave(s).
3 Detection of corresponding waves within the actual channels.
4 Examination of each wave for its traveling streams and its prop-

erties.

There are two  conceptually distinct approaches available for the
calculation of the canonical wave: either the mean activity over
a specified region; or the negative envelope of the channels. The
simplest canonical wave can be created by calculating the mean
activity over a single circular region of the electrode array, defin-
ing its center and radius. Alternatively, multiple canonical waves
can be computed by taking the mean activity of distinct regions.
Regions can be specified over the mid-line, leading to a frontal,
central and posterior canonical time series. Another option is to
calculate the mean activity of four regions equidistant around the
center, as was  done in the original slow wave detection algorithm
(Massimini et al., 2004). These four regions can be arranged as a
square (left/right; frontal/posterior), or as a diamond (single frontal
and posterior regions; left and right central region). Users may also
directly specify their own  canonical wave.

One issue with regional methods is that local waves outside the
specified region will not be represented in the canonical wave and
therefore have no chance of being detected. Thus, only waves that
pass through a substantial portion of at least one of the regions can
be detected – a source of bias that may  underestimate the amount
of locality in sleep. Conversely, if a single region is too large, then
the mean activity within the region may  no longer be represen-
tative and waves could be missed (see Supplementary Fig. 1 for
comparison of regional methods). Secondly, such a method does not
scale well to more sparsely recorded arrays where those predefined
regions may  only contain a few channels.

A solution is to calculate the negative envelope of all chan-
nels. This is akin to examining the butterfly plot (overlaying all
channels) and tracing the negative contour. Here, we calculate
the mean activity of the most negative 2.5% of channels at each
sample independently in the time series. The advantage is that
the most negative portion can potentially come from any channel
in the dataset and is not restricted to a particular region. Fur-
thermore, a single canonical wave is representative of the entire
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