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h  i g  h  l  i  g  h  t  s

• We  propose  a neuroevolutionary  model  for  studying  anxiety  in  the  elevated  plus-maze.
• It is based  on the evolution  of artificial  neural  network  weights  and architecture  by  a genetic  algorithm.
• Most  results  for  different  drug  conditions  are  statistically  significant.
• We  analyze  the  relevance  of  sensory  units  and hidden  neurons  for the  virtual  rats.
• Results  reinforce  that automatic  design  is  very  useful  for studying  complex  problems.
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a  b  s  t  r  a  c  t

Background:  Neuroevolution  comprises  the use  of evolutionary  computation  to  define  the architecture
and/or  to  train  artificial  neural  networks  (ANNs).  This  strategy  has been  employed  to  investigate  the
behavior  of  rats  in  the  elevated  plus-maze,  which  is  a widely  used  tool  for studying  anxiety  in mice  and
rats.
New  method:  Here  we  propose  a neuroevolutionary  model,  in which  both  the  weights  and  the  architecture
of  artificial  neural  networks  (our virtual  rats)  are  evolved  by a  genetic  algorithm.
Comparison  with  existing  method(s):  This  model  is  an  improvement  of a previous  model  that  involves  the
evolution  of just  the  weights  of the  ANN  by  the genetic  algorithm.  In order to compare  both  models,  we
analyzed  traditional  measures  of anxiety  behavior,  like  the  time  spent  and the  number  of  entries  in  both
open  and  closed  arms  of the  maze.
Results:  When  compared  to  real rat  data,  our findings  suggest  that  the  results  from  the  model  introduced
here  are statistically  better  than  those  from  other  models  in  the  literature.
Conclusions:  In  this  way,  the  neuroevolution  of  architecture  is  clearly  important  for  the development
of  the  virtual  rats. Moreover,  this  technique  allowed  the  comprehension  of  the importance  of different
sensory  units  and  different  number  of  hidden  neurons  (performing  as  memory)  in  the  ANNs  (virtual  rats).

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Artificial agents are an important tool for the investigation of
animal behavior. They have been used in the development and test
of cognitive and behavioral models (Webb, 2001). Among the arti-
ficial agents, those based on artificial neural networks (ANNs) are
particularly attractive (Donnarumma et al., 2015). Connectionist
models, like ANNs and some deep learning architectures, are based
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on the interconnection of simple non-linear units disposed in lay-
ers. They are capable of learning intricate patterns in large datasets
(LeCun et al., 2015), and, when used in artificial agents, can repro-
duce animal behavior (Beer and Gallagher, 1992). We  are interested
in developing artificial agents based on ANNs for the investi-
gation of exploratory behavior of rats in the elevated plus-maze
(EPM).

The EPM is one of most used tools for studying anxiety and
exploratory behavior in rodents (Hogg, 1996). Several neurobio-
logical studies have been performed with mice and rats in the EPM,
which received its name because of its shape; also because it is ele-
vated about 50 cm above the floor. Two  opposed plus-maze arms
are surrounded by walls (closed arms), while the remaining arms
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do not have walls (open arms). In general, rats spend more time in
the closed arms in the experiments with the EPM.1

The fear of exploring the maze is directly related to the animal’s
anxiety (Pellow et al., 1985; Hogg, 1996). As the fear influences the
activity of the animal in the maze, the EPM is a practical tool for esti-
mating the anxiety of the rodent. Data obtained over the trajectory
of the animal, as the percentage of time spent in closed and open
arms, are important indicatives of the individual anxiety level. In
this way, the EPM can be used to test the effects of anxiogenic and
anxiolytic drugs. Rodents that receive a dosage of an anxiogenic
drug, in general, reduce the exploration and the time they spend
in the open arms. The opposite occurs for rats under effects of anx-
iolytic drugs. In many cases, drug dosages are correlated with the
levels of EMP  exploration by the animal.

In recent years, there is a growing interest in developing artifi-
cial agents for the investigation of the behavior of rats in the EPM
(Salum et al., 2000; Giddings, 2002; Miranda et al., 2009; Shimo
et al., 2010; Tejada et al., 2010; Costa et al., 2012, 2013, 2014; Costa
and Tinós, 2014). One of the advantages of computational models is
their ability to predict real phenomena. In this way, it can reduce the
number of experiments with real rats, which implies less suffering
and death for those animals. To the best of the authors knowledge,
just two of the models proposed in the literature do not use ANNs;
instead, they use Markov models to compute different probabilities
for transitions of the artificial agent in different maze positions2

(Giddings, 2002; Tejada et al., 2010).
The neuroevolution, i.e., the use of evolutionary computation to

define the architecture and/or to train ANNs, was  firstly proposed
to investigate the behavior of rats in an EPM in 2010 (Shimo et al.,
2010). Shimo et al. (2010) used a genetic algorithm3 (GA) to train
the weights of an ANN. The appeal for using evolutionary compu-
tation for developing artificial agents is that, like in reinforcement
learning (Littman, 2015), it is not necessary to know the best action
for each instant of time in advance. In other words, desired outputs
for training are not necessary because we are interested in opti-
mizing an evaluation function over the entire trajectory and not
for each time step. The evolutionary ANN proposed by Shimo et al.
(2010), as well the other computational models proposed so far for
investigating the behavior of rats in the EPM, was built using data
obtained from trajectories of real rats. The fitness function of the
GA used to train the ANN is based on the difference between meas-
ures obtained from the trajectories of real rats and artificial agents,
called here virtual rats.

Since 2012, we have been exploring neuroevolutionary models
from a different perspective, where it is not necessary to employ
data obtained from the trajectory of real rats to build the virtual
rat (Costa et al., 2012, 2013, 2014; Costa and Tinós, 2014). The
artificial agent is built by optimizing an evaluation function based
on the premise that rodent exposure to a new environment
causes simultaneous feelings of fear and curiosity in the animal
(Montgomery, 1955). Data from trajectories of real rats are used
only to validate the optimized virtual rat, i.e., data from real rats
are used after the optimization of the artificial agent. The recent

1 The experiments have, as standard, a 5-min duration. Some studies have shown
that, after this period, rat’s interest in the maze is naturally decreased (Montgomery,
1955).

2 In order to facilitate the study of rodent trajectories in the maze, the EPM arms
are  divided into equal positions (rectangles).

3 Genetic algorithms are a metaheuristic population inspired in Darwin’s theory
of  evolution by natural selection. Metaheuristics are higher-level procedures used
to find good heuristics for problem solving and machine learning. The key idea in
genetic algorithms, and also in other population metaheuristics, is to evolve in par-
allel a population of candidate solutions, instead of a single solution, to a given
problem. The candidate solutions are selected and transformed using operators
inspired by natural genetic variation and natural selection (Mitchell, 1998).

models with neuroevolution have provided the most promising
results until now, including good simulations of rats under effects
of anxiolytic and anxiogenic drugs (Arantes et al., 2013; Costa et al.,
2014). Furthermore, the neuroevolutionary models correspond to
a general framework that can be easily adapted to other behavioral
tests developed with real rats in Psychobiology.

In all the neuroevolutionary models proposed so far, the weights
of the ANN are trained using a GA. The architecture of the ANN, e.g.,
the number of inputs and neurons in the hidden layer, is fixed.
Investigating the best architectures for an ANN employed in the
virtual rat can provide important insights about strategies used
by the rats while navigating in the EPM. In the neuroevolution-
ary models (Costa et al., 2012, 2013, 2014; Costa and Tinós, 2014),
the choice of the ANN’s architecture is defined by the designer using
heuristic rules and/or a trial and error approach. However, the num-
ber of possible architectures is huge, and, as a consequence, such
approaches can result in unsatisfactory models.

Yao (1999) cites three main strategies for using evolutionary
computation in ANNs: (i) adjusting the weights of ANNs; (ii) find-
ing the best architectures of ANNs; (iii) both tasks (i) and (ii). Here,
we propose to co-evolve the architecture and the weights of the
ANN in a model for investigating the behavior of rats in the EPM. In
other words, while the past works used neuroevolution strategy (i),
here we propose to use strategy (iii). In order to evaluate the quality
of the new model, we compare it with the previous model, that is,
a neuroevolutionary model with fixed architecture. We  also ana-
lyze the best evolved architectures. The best architectures can also
provide important insights about the type of sensory information
(input units) and usage of memory (hidden layer units) necessary
for a simple agent to reproduce the behavior of rats in the EPM. As
a consequence, they can also provide information about the strat-
egy used by the rat while navigating in the maze. This paper is
organized as it follows. In Section 2, we  present the two models in
detail, whereas in Section 3 we show the methods used to com-
pare them. The results are exhibited in Section 4 and discussed in
Section 5.

2. Methodology

Two  models are presented in this section. Model 1, similar to
the one used in Costa et al. (2014),4 is composed by an ANN with
fixed architecture (Section 2.1). The GA is used to train the weights
of the ANN. In Model 2, proposed in this work, the weights and the
architecture of the ANN are co-evolved (Section 2.2). In both mod-
els, each arm of the virtual EPM is divided into five equal rectangles
(named positions), in which the virtual rat navigates. The rectangles
totalize 21 positions: five in each arm type, and one in the center,
as shown in Fig. 1.

2.1. Model 1: evolving ANNs with fixed architecture

The virtual rat is controlled by a multilayer perceptron (MLP) with
fixed architecture. The MLP  has: six units in the input layer, four
neurons in the single hidden layer, and four neurons in the output
layer. Each hidden neuron has recurrent connections to all other
hidden neurons, i.e., the MLP  is an Elman network (Elman, 1990).

4 There is a difference between the model presented by Costa et al. (2014) and
the Model 1 presented here. In (Costa et al., 2014), the sensory data used as inputs
of the ANN during the training was  obtained by positioning a robot in each position
of  an EPM replica, and recording the reading of infrared sensors. Here, the virtual
rat  is considered a point in the EPM, and the sensory data is directly computed. This
was  done in order to make the model more general. Similar results were obtained
for  both approaches; however, the parameters found for each model are different.



Download English Version:

https://daneshyari.com/en/article/6267576

Download Persian Version:

https://daneshyari.com/article/6267576

Daneshyari.com

https://daneshyari.com/en/article/6267576
https://daneshyari.com/article/6267576
https://daneshyari.com

