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• We  present  a method  for  power  spectral  estimation  based  on  robust  statistics.
• Compared  to standard  methods,  the  new  approach  is  resistant  to  transient  artifacts.
• Confidence  intervals  estimated  in  a Bayesian  fashion  have  appropriate  coverage.
• The  approach  is computationally  efficient.
• Software  is  provided  in the form  of  a MATLAB  toolbox.
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a  b  s  t  r  a  c  t

Background:  Typical  electroencephalogram  (EEG)  recordings  often  contain  substantial  artifact.  These  arti-
facts, often  large  and  intermittent,  can  interfere  with  quantification  of the  EEG  via its  power  spectrum.
To  reduce  the  impact  of  artifact,  EEG  records  are typically  cleaned  by  a preprocessing  stage  that  removes
individual  segments  or components  of the  recording.  However,  such  preprocessing  can  introduce  bias,
discard  available  signal,  and  be labor-intensive.  With  this  motivation,  we  present  a  method  that  uses
robust  statistics  to reduce  dependence  on preprocessing  by  minimizing  the  effect  of large  intermittent
outliers  on  the  spectral  estimates.
New  method:  Using  the  multitaper  method  (Thomson,  1982)  as  a starting  point,  we  replaced  the  final  step
of  the  standard  power  spectrum  calculation  with  a quantile-based  estimator,  and the  Jackknife  approach
to confidence  intervals  with  a Bayesian  approach.  The  method  is  implemented  in provided  MATLAB
modules,  which  extend  the  widely  used  Chronux  toolbox.
Results:  Using  both  simulated  and  human  data,  we show  that  in  the  presence  of  large  intermittent  outliers,
the  robust  method  produces  improved  estimates  of  the  power  spectrum,  and  that  the  Bayesian  confidence
intervals  yield  close-to-veridical  coverage  factors.
Comparison to existing  method:  The  robust  method,  as compared  to the  standard  method,  is  less affected
by  artifact:  inclusion  of  outliers  produces  fewer  changes  in the  shape  of  the power  spectrum  as  well as
in  the  coverage  factor.
Conclusion: In  the  presence  of  large  intermittent  outliers,  the  robust  method  can  reduce  dependence  on
data  preprocessing  as compared  to standard  methods  of  spectral  estimation.

© 2016  Elsevier  B.V.  All  rights  reserved.

Abbreviations: EEG, electroencephalogram; PDF, probability density function;
CDF, cumulative density function.
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1. Introduction

Electroencephalography (EEG), a technique for recording the
electrical activity of the brain via surface electrodes, is a com-
monly used assay of brain activity in research and clinical settings.
Well-recognized advantages of the EEG include its high temporal
resolution, noninvasive nature, and ease of use (Bunge and Kahn,
2009). However, it is also highly sensitive to electrical activity from
non-neural sources, such as eye movements (Gasser et al., 1992),
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muscle activity (Whitham et al., 2007), electrode movement, and
electric fields from the environment (Tatum et al., 2011). These
sources generate signals that corrupt the underlying neural signal,
and are difficult, if not impossible, to avoid.

For many research applications, and increasingly for clinical
applications (Schiff et al., 2014), spectral measures are used to ana-
lyze EEG characteristics (Mitra and Pesaran, 1999). Since activity in
specific frequency bands often has direct biological interpretations
(Penfield and Jasper, 1954), the power spectrum is of particular
interest. However, since the raw EEG signal is contaminated by non-
neural sources, obtaining reliable estimates of the power spectrum
that reflect underlying brain activity is not straightforward.

Computation of the power spectrum typically involves seg-
menting the continuous signal, applying Fourier analysis to each
segment, and calculating the mean over segments of the power
at each frequency. The data segments, typically of duration 1 s or
more, may  be determined arbitrarily (e.g., for records of sponta-
neous EEG), or based on events in a behavioral paradigm (e.g.,
for event-related potential studies). Fourier components arising
from segments contaminated by typical artifacts (e.g., muscle and
eye movements) are typically large relative to those of segments
that only contain the neural signal, and therefore bias the mean
upwards. This problem is usually addressed by removing these
artifacts, by a combination of manual identification of artifact-
containing segments and automated means, such as independent
component analysis (ICA) (Makeig et al., 1996); however this can
be labor- and time-intensive, subjective, and can discard portions
of usable data.

Here we describe an alternative approach to this outlier prob-
lem, via the use of robust statistics. Specifically, we  focus on the
median and other quantile-based statistics. Via simulations and
application to real EEG data, we show that this approach can recover
the power spectrum of the underlying signal even in the presence
of substantial artifact. Finally, we provide code that extends the
Chronux (Bokil et al., 2010; Mitra and Bokil, 2008), toolbox to carry
out these computations, including the calculation of Bayesian con-
fidence intervals.

2. Methods

2.1. Algorithm

2.1.1. Modified multitaper method
A power spectrum is typically estimated from a measured time

series by cutting the time series into segments, applying Fourier
analysis to these segments, and averaging the power in each fre-
quency bin across segments. The true value of the power spectrum
is the limit of this process as the length and number of the data
segments tend to infinity. However, in practice these segments are
finite in length and limited in number, so power spectral estimates
are necessarily biased (resulting from spectral leakage due to the
finite length of the data segment) and imprecise (due to the finite
number of data segments).

The multitaper method (Prieto et al., 2007), a power-spectral
estimator that we use as a starting point for our approach, tackles
the tradeoff between this bias and variance in a way that is opti-
mal  for Gaussian signals. The method minimizes spectral leakage
(the artifactual spreading of power from one frequency bin into its
neighbors), by windowing each segment by an orthogonal set of
functions, the Slepian tapers. For further background on the multi-
taper method see Thomson (1982), Mitra and Pesaran (1999) and
Mitra and Bokil (2008). Chronux is a freely available MATLAB tool-
box that provides convenient implementations of the multitaper
method, which we extend with an implementation of the robust
approach.

The standard multitaper method consists of the following steps:
(1) multiplying each data segment by each of the tapers, (2)
applying Fourier analysis to these products, (3) averaging over
tapers within each segment, and (4) averaging over segments. To
formalize this, we  denote the original signal by X (t),  with B seg-
ments cut from the signal denoted as x1 (t) , . . ., xb (t) , . . .,  xB (t),
each of length T . These segments are non-overlapping, but
need not be contiguous. We denote the K Slepian tapers by
a1 (t) , . . .,  ak (t) , . . .,  aK (t) (the choice of K is driven by the desired
spectral resolution and data length; a common choice for 3-s-long
segments, and the Chronux default, is K = 5). With this notation,
the standard multitaper estimate of Sx (ω),  the true spectral power
at frequency ω, is defined as:

Ŝstandard(ω) = 1
B
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We denote the power estimate for a single sample b and a single
taper by Sb,k (ω):

Sb,k (ω) = 1
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With this notation, the standard spectral estimate takes the form

Ŝstandard (ω) = 1
B

B∑
b=1

1
K

K∑
k=1

Sb,k (ω) . (3)

Thus, the standard multitaper estimate is a nested mean: first a
mean over the K tapers within each segment to obtain the estimate
Ŝb (ω) = mean

({
Ŝb,k (ω)

})
, and then a mean over the B segments:

Ŝstandard (ω) = mean
({

Ŝb (ω)
})

. (4)

Since our goal is to reduce the effect of outlier estimates
from each segment, we  replace the mean over segments by a
robust estimator, resulting in the estimated power spectral quan-
tity Ŝrobust (ω). There are many possible choices for the robust
estimator—for example: an estimator based on the hth quantile,
a trimmed mean, a Winsorized mean (Huber, 1963), or iterative
rejection of outliers. While the present framework applies to all of
these choices, estimators based on quantiles are more amenable to
computation of Bayesian confidence intervals (see below), and we
therefore focus on these, both in the illustrations below and in the
MATLAB toolbox. We  denote the estimator based on the hth quan-
tile as Ŝquantile h (ω). Note that h = 1/2 corresponds to the median;
this is the default value in the code.

Even for Gaussian data, the median power of the tapered esti-
mates does not equal the mean power. This is because spectral
estimates are approximately distributed as chi-squared, which
is positively skewed. As shown in Appendix A, we  can take the
skewing into account by dividing the median power by a data-
independent scale factor. Furthermore, scale factors can be derived
that convert not just the median (0.5 quantile), but any quan-
tile, into mean power. Appendix A details the calculation of these
scale factors, which is implemented in the MATLAB module analyt-
ical scalefactor Robust().

Including this scale factor yields our main result, the robust
spectral estimate:

Ŝquantile h (ω) =
quantile h

({
Ŝb (ω)

})
C (h, d, B)

, (5)

where C (h, d, B) is the scale factor for quantile h; d is the number of
degrees of freedom (d = 2K for typical frequencies, d = K for DC and
the Nyquist frequency); and B, as above, is the number of segments.
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