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• An  automated  EEG  artifact  removal  method  is developed.
• A  novel  independent  component  analysis  strategy  is  proposed  and  applied.
• Dimension  reduction  is  achieved  with  permutation  and  resampling.
• Improved  eye  blinks  removal  performance  is  demonstrated.

a  r  t i  c  l  e  i  n  f  o

Article history:
Received 18 January 2016
Received in revised form 7 April 2016
Accepted 4 May 2016
Available online 5 May  2016

Keywords:
EEG
ICA
Artifact removal
Template matching
Permutation
Resampling

a  b  s  t  r  a  c  t

Background:  Multiple  noncephalic  electrical  sources  superpose  with  brain  signals  in  the  recorded  EEG.
Blind source  separation  (BSS)  methods  such  as  independent  component  analysis  (ICA)  have  been  shown
to  separate  noncephalic  artifacts  as unique  components.  However,  robust  and  objective  identification  of
artifact  components  remains  a challenge  in practice.  In addition,  with  high  dimensional  data,  ICA requires
a  large  number  of  observations  for stable  solutions.  Moreover,  using  signals  from  long  recordings  to
provide  the  large  observation  set  might  violate  the  stationarity  assumption  of  ICA due to  signal  changes
over  time.
New  method:  Instead  of  decomposing  all channels  simultaneously,  subsets  of  channels  are  randomly
selected  and  decomposed  with ICA.  With  reduced  dimensionality  of the  subsets,  much  less amount  of
data  is required  to derive  stable  components.  To  characterize  each  independent  component,  an  artifact
relevance  index (ARI)  is calculated  by template  matching  each  component  with  a model  of the artifact.
Automatic  artifact  identification  is  then  implemented  based  on  the  statistical  distribution  of  ARI  of  the
numerous  components  generated.
Results:  The  proposed  permutation  resampling  for identification  matching  (PRIM)  method  effectively
removed  eye  blink  artifacts  from  both  simulated  and  real EEG.
Comparison  with existing  method:  The  average  topomap  correlation  coefficient  between  the  cleaned  EEG
and the  ground  truth  is  0.89  ±  0.01  for PRIM,  compared  with  0.64  ±  0.05  for  conventional  ICA based
method.  The  average  relative  root-mean-square  error  is 0.40  ±  0.01  for PRIM,  compared  with  0.66  ± 0.10
for conventional  method.
Conclusions:  The  proposed  method  overcame  limitations  of  conventional  ICA  based  method  and  suc-
ceeded  in removing  eye  blink  artifacts  automatically.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Some of the most important advances in neuroscience research
and clinical diagnosis have been made with electroencephalogra-
phy (EEG). However, the utility of EEG is limited due to artifacts
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caused by eye movements, eye blinks, muscle activity, heart sig-
nals, line noise, or noise from joint recordings conducted with other
imaging modalities (e.g., MRI). These artifacts superpose with the
EEG data, impacting statistical and physical analysis of the brain’s
contribution to the EEG signal.

Numerous strategies can be used to remove artifacts from the
EEG. A straightforward approach is template subtraction. Based
on the assumption of that the occurrence of the artifact is iden-
tical in each instance and the EEG signal is random relative to the
artifact, a pure artifact template can be created through averaging
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multiple occurrences of the artifact. The template is then used to
subtract each instance of the artifact from the raw signal without
removing the signal of interest. However, the obvious limitation is
that if the artifact is highly variable, the template does not match
each instance, resulting in imperfectly cleaned data, even with sev-
eral modifications and improvements to this template subtraction
approach (Allen et al., 1998; Sijbers et al., 1999; Niazy et al., 2005).

Regression-based approaches have been applied to correct ocu-
lar artifacts (Gratton et al., 1983; Wallstrom et al., 2004) using the
electrooculogram (EOG) recorded adjacent to the eyes as the refer-
ence signal. The problem is that the EOG is not free of EEG signals,
such as from the frontal lobes. Similarly, Kalman filters and multi-
channel recursive least squares (M-RLS) algorithm were developed
to remove motion and ballistocardiogram (BCG) artifacts, using
accelerometers, wire loops or electrodes on a conducting layer to
generate movement-tracking reference signals (Bonmassar et al.,
2002; Masterton et al., 2007; Chowdhury et al., 2014). Although
these techniques have proved useful, the relationship between the
reference signal and the induced artifact may  not always be lin-
ear, causing difficulty for a linear filtering approach. In addition, it
is difficult to acquire a reference signal for some artifacts, such as
electromyographic (EMG) activity that occurs at the scalp.

Blind source separation (BSS) is an approach that doesn’t have
the limitations noted for the above methods. The basic idea of BSS is
to decompose the raw data into components that represent cortical
activity and artifacts. Once the artifact components are identified,
the brain signal can be reconstructed by excluding the artifact
components. BSS can be carried out in many ways, e.g., canoni-
cal correlation analysis (CCA), principle component analysis (PCA)
and independent component analysis (ICA). ICA has proven effec-
tive in separating unique components, particularly with powerful
rotation methods such as Infomax (Bell and Sejnowski, 1995). Each
independent component consists of a waveform that describes a
source activity plus a topography vector that describes how the
waveform contributes to the recorded signal. The advantage of ICA
over PCA is that it doesn’t require the source topography to be
orthogonal, which is not a reasonable assumption of the brain’s
physiological activity in general. Instead of minimizing covariance
among sources, ICA aims to maximize their independence. With
the assumption that artifacts are statistically independent from the
ongoing EEG, spatial filters derived by the ICA algorithm have been
used to remove a wide variety of EEG artifacts, such as eye blinks,
eye movements and electrode artifacts (Jung et al., 2000a,b; Ille
et al., 2002; Flexer et al., 2005; Iriarte et al., 2003).

One practical challenge of the ICA approach to artifact removal
is that manual interaction is usually required to identify arti-
fact components following decomposition, based on either spatial
topographies or temporal characteristics or both. Different com-
ponents are generated for each data set, making manual selection
cumbersome in addition to being a subjective process. Recently,
Bartels et al. (2010) applied a support vector machine (SVM)
algorithm to classify EOG and EMG  components with supervised
training. In addition, Mantini et al. (2007) proposed automatic
identification of artifact components based on the distribution of
correlation coefficients of all independent components with the
reference signal that represents the artifact of interest.

A more serious limitation of the ICA approach is that it requires a
large number of observations (data points) to generate stable inde-
pendent components. The number of data points needed is typically
kC2 (Nolan et al., 2010) where k is a multiplier generally set to 25,
as recommended in (Onton and Makeig, 2006), and C is the num-
ber of components. Given a 256-channel recording, for example,
the amount of data required to find 256 independent components
would be 25 × 2562 = 1,638,400 time points. Even at 1000 samples/s
sampling rate, this would require almost 30 min  of data, during
which there may  be significant variations in both the artifact and

the brain signal. These changes imply that the spatial stationarity
assumption of ICA (Jung et al., 2000c) may  be violated. The irony
is that ICA then only works on the inadequate measurement set of
low channel count EEG.

To address this high dimensional observation hunger (data
requirement demand) as well as minimize the risk of violating
the stationarity assumption associated with long recordings, PCA
is often performed as a data reduction step, truncating the dimen-
sionality of the data prior to ICA (Nolan et al., 2010; Kiviniemi et al.,
2003; Haufe et al., 2014). As a rule of thumb, the minimum sample
size of PCA is five samples per variable (five time points per chan-
nel in the case of EEG) (Gorsuch, 1983), which is much less than the
kC2 samples required for ICA. This is because PCA can be derived
linearly by singular value decomposition of the correlation matrix,
while ICA is derived with higher-order statistics that require more
samples to achieve stable solutions. Although small data sets can be
processed by using a PCA + ICA approach, truncation of dimensions
risks losing important information in the data, if the information is
not well captured by the orthogonal basis set defined by PCA.

In the present research, we aimed to improve and optimize the
performance of ICA-based artifact removal approaches for high
dimensional EEG data. We  employed the “divide and conquer”
strategy from computer science to address the high dimension-
ality challenge. Specifically, the divide and conquer approach that
we propose employs a permutation resampling for identification
matching (PRIM) strategy that can be applied to ICA (or other BSS
methods) for EEG artifact removal. Instead of decomposing all chan-
nels simultaneously, or relying on PCA for data reduction, we  divide
the measurement channels into subspaces. Subsets of channels are
randomly selected (with replacement) and ICA is conducted on
each subset. The result is stable decomposition with smaller mea-
surement sets, each of which is a random subset of the head surface
topography captured by channel sub-sampling. The assumption of
the method is that the true component structure, of both brain
sources and artifacts, is captured for each subset, such that the
artifact components can then be subtracted accurately from each
subset.

To facilitate ease-of-use and remove subjective judgments asso-
ciated with manual identification of artifact components, we also
developed an automated method to clearly separate artifact and
non-artifact ICA components. For each of the numerous compo-
nents generated by PRIM, we  calculate an artifact relevance index
(ARI); this metric reflects a given component’s similarity with the
artifact template. The resulting ARI histogram highlights the dif-
ference between artifact and non-artifact components in the form
of two peaks separated by a low valley. By fitting the ARI distribu-
tion with a cubic polynomial, the lowest point of the fitted curve is
used to determine automatically the threshold that separates arti-
fact from non-artifact components. We  evaluate the performance
of the proposed approach with eye blink removal, using both sim-
ulated EEG as well as real EEG signals and compare the results with
the PCA + ICA method.

2. Materials and methods

2.1. The PRIM workflow

EEG data is acquired for a duration that can span minutes to
days, depending on the nature of the study or clinical exam. PRIM
operates on long data files using relatively small sequential seg-
ments, thus minimizing the risk that the stationarity assumption
of ICA is violated. The workflow of the PRIM approach is shown in
Fig. 1. Each segment is processed through the entire workflow inde-
pendent of the other segments. Once all segments are processed,
the complete data file can be reconstructed.
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