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• Demonstrate  dependency  of  cluster  analysis  results  on  user  threshold  statistic.
• Propose  Unbiased  Cluster  Estimation  (UCE),  a threshold-free  non-parametric  approach.
• UCE  is validated  as a threshold-free  approach  for  calculating  statistical  significance.
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a  b  s  t  r  a  c  t

Background:  Recent  increase  in the size  and  complexity  of  electrophysiological  data  from  multidimen-
sional  electroencephalography  (EEG)  and magnetoencephalography  (MEG)  studies  has  prompted  the
development  of  sophisticated  statistical  frameworks  for data  analysis.  One of the  main  challenges  for
such  frameworks  is the  multiple  comparisons  problem,  where  the large  number  of  statistical  tests  per-
formed  within  a  high-dimensional  dataset  lead  to an  increased  risk  of  Type  I errors  (false  positives).
A  solution  to  this  problem,  cluster  analysis,  applies  the  biologically-motivated  knowledge  of  correlation
between  adjacent  voxels  in  one  or  more  dimensions  of  the  dataset  to  correct  for  the  multiple  comparisons
problem  and  detect  true  neurophysiological  effects.  Cluster-based  methods  provide  increased  sensitiv-
ity  towards  detecting  neurophysiological  events  compared  to conservative  methods  such  as  Bonferroni
correction,  but are  limited  by  their  dependency  on  an  initial  cluster-forming  statistical  threshold  (e.g.
t-score,  alpha)  obstructing  precise  comparisons  of  results  across  studies.
New method:  Rather  than  selecting  a single  threshold  value,  unbiased  cluster  estimation  (UCE)  computes
a  significance  distribution  across  all possible  threshold  values  to  provide  an  unbiased  overall  significance
value.
Comparison  to existing  methods:  UCE  functions  as  a novel  extension  to  existing  cluster  analysis  methods.
Results:  Using  data  from EEG  combined  with  brain  stimulation  study,  we showed  the  impact  of  statistical
threshold  on  outcome  measures  and  introduction  of bias.  We  showed  the  application  of  UCE  for  different
study  designs  (e.g.,  within-group,  between-group  comparisons).
Conclusion:  We  propose  that  researchers  consider  employing  UCE  for multidimensional  EEG/MEG
datasets  toward  an unbiased  comparison  of  results  between  subjects,  groups,  and  studies.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Brain activity captured at a global scale using electroen-
cephalography (EEG) or magnetoencephalography (MEG) record-
ings can be described as a multidimensional entity, where signals
are simultaneously recorded from a large number of sensors, typ-
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ically at hundreds of samples per second. Under the assumption
that specific brain processes are frequency-dependent, an extra
dimension can also be added by modeling brain waves as a sum of
oscillations over time. In recent research, electrophysiological brain
response is often characterized through several dimensions (e.g.,
frequency, time, and phase) across space (i.e., all sensors). Typical
analysis of such multidimensional data evaluates the significance
of measured brain “activations”, modelled as active regions in a
random field (Marroquin et al., 2011). Elements (voxels) of these
large datasets are considered “active” if they meet a certain thresh-
old of statistical significance (i.e., t-score or z-score) compared to
other voxels in the dataset. Since traditional analysis on a voxel-
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wise basis involves a very large number of comparisons, it runs
into the risk of Type I errors (false positives). This is known as the
multiple comparisons problem and can be accounted for by using
one of the many available statistical solutions.

Classically, voxel-wise correction methods such as the Bonfer-
roni correction and others (Shaffer, 1995) are widely applied across
EEG and MEG  studies. However, these methods are excessively con-
servative and have reduced sensitivity towards detecting a true
effect, leading to an abundance of Type II (false negative) errors.
To address these issues, cluster-based thresholding frameworks
have been introduced (Poline and Mazoyer, 1994; Bullmore et al.,
1999; Maris and Oostenveld, 2007). Cluster-based frameworks
take advantage of smoothness across one or more dimensions in
EEG, MEG  and related neuroimaging data (Groppe et al., 2011)
by grouping active neighbouring voxels into clusters to represent
neural activation events. For example, the spatial extent of an acti-
vation across neighbouring sensors in EEG results from volume
conduction. Cluster-based frameworks typically involve two steps:
1) setting a threshold statistic (TS) and grouping neighbouring
active (supra-threshold) voxels into clusters, and 2) calculating a
p-value for each cluster, based on a measure of the size of acti-
vation. A well-known caveat of this method is in the choice of
an initial cluster-forming TS since it can have a large effect on
the resulting cluster and its value of significance (e.g., see Fig. 1
in Method). Moreover, instability from a thresholding process can
introduce a signal-type bias, where a low TS favors a low inten-
sity (in terms of t-score or z-score), spatially-extended signal and
a high TS favors high intensity, focal events. Common cluster mea-
sures may  include the number of active voxels in a cluster, the
maximum intensity within a cluster, and more recently the cluster
“mass”. Cluster-extent and cluster-maximum measures introduce
further bias towards extended weak signals and high intensity focal
events, respectively. Cluster-mass methods (Bullmore et al., 1999;
Maris and Oostenveld, 2007) however, have proven to be more
sensitive since clusters are calculated over an initial TS and the
sum of intensity values within each cluster is used to determine a
“mass” value for each cluster. Therefore, the cluster-mass method
not only accounts for cluster extent but also gives precedence to
the intensity of the values contained within each cluster.

While cluster-mass methods attempt to relieve threshold-
signal bias, further improvements are needed and have been
introduced recently for multidimensional data analysis. One such
recent framework is the threshold-free cluster enhancement (TFCE)
method (Smith and Nichols, 2009) proposed for application in mag-
netic resonance imaging (MRI). TFCE is a cluster-maximum method
that enhances the original data, boosting weaker signals lying in a
larger cluster by a measure of their “support”, i.e., the extent of the
surrounding cluster. This involves enhancing each pixel p by a mea-
sure of its support over a range of thresholds h (from h0 to hp), and
has the effect of enhancing weak but broadly supported signals to
match sharp, focal signals:

TFCE (p) =
∑hp

h=h0

e(h)EhH, (1)

where h is the current threshold level, e is the extent of the sig-
nal at h, and E, H, are scaling parameters. While Smith and Nichols
implemented this method for functional MRI  (fMRI) data, it was
recently extended to EEG analysis (Mensen and Khatami, 2013)
and proved to increase the sensitivity of signal detection over
traditional clustering methods. A limitation of this threshold-free
approach however, is the introduction of additional parameters (E
and H) that can be adjusted to vary results by either increasing bias
towards the extent of activation or towards the intensity of acti-
vations. Another recent approach (Marroquin et al., 2011) suggests
a morphology-based approach for detecting activations in random
fields. However, this method similarly makes prior assumptions on

the shape of the underlying activation event (requiring an input of
structuring elements), introducing a user bias to the results. While
these recent methods are more effective in controlling Type I error
rate (also known as the family-wise error rate, FWER), a recent
simulation study (Pernet et al., 2015) found that, on average, all
cluster-based methods control FWER effectively. With this in mind,
the current issue cluster analysis faces is not sensitivity and detec-
tion capabilities, but rather obtaining a bias-free measure of event
significance.

To eliminate the recurrent issue of user bias in cluster analy-
sis, we  propose an unbiased cluster estimation (UCE) method and
aim to extend existing cluster-based statistical frameworks. UCE
is implemented in a true threshold-free manner without the need
for tuning parameters, and provides a standardized measure across
experiments for direct statistical comparisons. This is accomplished
by using a number of different thresholds to create a distribution
of p-values and then obtain an average result that represents a
threshold-free index. As a result, accurate comparisons can be made
between neurophysiological studies without introducing user bias.
In this study, UCE is applied to the cluster-mass method (Maris and
Oostenveld, 2007) to ensure the characteristics of EEG recordings
are defined by a framework that is intuitive, statistically sensitive,
and applicable to a wide range of scenarios. To demonstrate the use
of the method, UCE is used to analyze multidimensional EEG record-
ings between two conditions within a group, and then between
two independent groups. We  will demonstrate that UCE properly
detects neurophysiological effects, providing an unbiased measure
of significance comparable to previous literature.

2. Method

2.1. Multidimensional dataset

Data is provided from previous transcranial magnetic stimula-
tion (TMS) combined with EEG (TMS-EEG) experiments (Farzan
et al., 2010; Radhu et al., 2014). This includes 60-channel EEG
recordings during single-pulse and paired-pulse TMS  paradigms,
applied to dorsolateral prefrontal cortex in 84 subjects from
two groups: healthy controls (n = 46), and schizophrenia patients
(n = 38). We  used this data to examine the degree of a neurophysio-
logical process, cortical inhibition (CI), in two independent groups
(within-subject design) and to compare CI between two groups
(between-group design). Typically, a TMS-evoked response occurs
after every TMS  pulse. However, in the paired-pulse paradigm,
CI causes the attenuation of the resulting TMS-evoked response
(Daskalakis et al., 2008; Farzan et al., 2009). We  have published
on this research question and previously explored the underlying
characteristics of the signals, so we focus on validating the UCE  sta-
tistical methodology. Finally, this dataset permits application of our
statistical approaches on both within and between subject designs.

Using this dataset, CI is evaluated as the difference between
the EEG power of the two  TMS  conditions, single-pulse (one TMS
pulse per trial: control paradigm) and paired-pulse (two TMS pulses
100 ms  apart per trial: test paradigm) (García Domínguez et al.,
2014). Power is defined for 106 time windows, from 0 to 500 ms
after stimulation and for 50 frequencies, from 1 to 50 Hz. Thus,
TMS conditions for each subject are represented by a matrix of 106
(time) × 50 (frequency) × 60 (channel) values.

2.2. Cluster analysis

Analysis on the spatial properties of high-density EEG data in the
time and frequency domain requires a 4-dimensional framework,
with an adjacency matrix to define neighbouring relationships.
That is, two elements (voxels) from the dataset are neighbors if
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