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h  i g  h  l  i  g  h  t  s

• We  adapt  p-value  combiners  to work  for  frequency  domain  data.
• A  two-step  procedure  for  graphical  modelling  on EEG  data  is  proposed.
• We  control  for  false  detections  across  networks  with  various  level adjustments.
• Methods  are  proposed  to  combine  results  across  subjects  and create  group  results.
• Coloured  graphs  are  made  for  each  group,  showing  the  prevalence  of  connections.
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a  b  s  t  r  a  c  t

Background:  In  the graphical  modelling  of  brain  data, we  are  interested  in estimating  connectivity
between  various  regions  of interest,  and evaluating  statistical  significance  in  order  to  derive  a  network
model.  This  process  involves  aggregating  results  across  frequency  ranges  and  several  patients,  in  order
to obtain  an  overall  result  that  can  serve  to construct  a  graph.
New  method:  In this  paper,  we  propose  a method  based  on  p-value  combiners,  which  have  never  been
used  in  applications  to EEG  data  analysis.  This  new  method  is  split  into  two  aspects:  frequency-wide  tests
and  group-wide  tests.  The  first  step  can  be  effectively  adjusted  to  control  for  false  detection  rate.
Results:  This  two-step  protocol  is applied  to EEG  data  collected  from  distinct  groups  of mental  health
patients,  in  order  to draw  graphical  models  for  each  group  and  highlight  structural  connectivity  differ-
ences.  Using  the  method  proposed,  we  show  that it is possible  to  reliably  achieve  this  while  effectively
controlling  for  false  connections  detection.
Comparison  with  existing  method(s):  Conventionally,  the  Holm’s  Stepdown  procedure  is  used  for  this  type
of problem,  as  it is robust  to type  I errors.  However,  it is known  to  be  conservative  and  prone  to  false
negatives.  Furthermore,  unlike  the  proposed  methods,  it does  not  directly  output  a decision  rule on
whether  to accept  or reject  a statement.
Conclusions:  The  proposed  methodology  offers  significant  improvements  over  the  stepdown  procedure
in  terms  of error  rate  and  false  negative  rate  across  the  network  models,  as  well  as  in  term  of  applicability.

© 2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article under  the  CC  BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The understanding of connectivity in large-dimensional time
series has been a topic of central importance in neurology, and
more precisely in neurological imaging. The interest in these tech-
niques is widespread across imaging techniques (EEG, Medkour
et al., 2010; fMRI, Marrelec et al., 2006) and experimental works
of various types (learning experiments, Fiecas and Ombao, 2014;
motor skills, Mima  et al., 2000; resting-state, Salvador et al., 2005).
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One of the most important features of neurological data analysis is
functional connectivity between parts of the brain: how do various
regions of interest interact? For this purpose, graphical modelling
of time series is an ideal tool.

A well-known contribution to this field is the frequency-domain
approach exposed in Dahlhaus (2000). In this methodology, the
data is transformed into the frequency domain, where its co-
dependency structure is analysed via the partial coherences. The
partial coherence measures the connection between two series
after the removal of the linear effects of the remaining series. It
is a function of frequency and can be used to reflect connectivity
across any frequency range  ̋ ⊆ [0, fN]. It is derived from S−1(f), the
inverse of the spectral matrix S(f). Its use in network analysis and
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related methodologies has become very widespread in the litera-
ture (Makhtar et al., 2014; Mima  et al., 2000; Pohja et al., 2002).

Once the partial coherences have been estimated, an impor-
tant question arises concerning the statistical significance of the
results. A zero-valued estimate would indicate that no connec-
tion is detectable between two variables at a given frequency. The
standard approach is to test for the following at all frequencies f in
range:

H0 : partial coherence = 0 vs H1 : partial coherence > 0.

In some cases, multiple measurements of the data are avail-
able, hence allowing the estimation of a bootstrapped distribution
(Fiecas and Ombao, 2011). When this is not possible, the use of
analytical tools is required. A popular alternative involves the Par-
tial Mutual Information (PMI), which integrates the estimates at all
frequencies within a band into one variable for each partial coher-
ence, and is then compared to a threshold (Salvador et al., 2005).
However, its distribution and statistical properties remain largely
unknown, and it is often unclear how the threshold value should
be set for a given band in [0, fN].

In this paper, we consider an alternative protocol that follows
the method detailed in Medkour et al. (2009). Under conventional
pre-processing and estimation methods for the spectral matrix S(f),
its distribution and the distribution of its partial coherence are
known (Goodman, 1963), and then, under H0, the partial coherence
estimates can be modelled as Beta-distributed random variables.

In the frequency domain approach, results are derived at each
frequency f, for all frequencies in range f ∈ ˝.  However, this is many
steps away from an overall graphical model. Once the partial coher-
ences have been measured and tested for significance at a suitable
level ˛, how can the results be aggregated across frequencies and
subjects to deliver one graph?

This can be regarded as a multiple hypothesis testing problem,
otherwise known as a conjunction analysis problem in Neurology
(Friston et al., 1999). A traditional approach to this is the Holm’s
Stepdown procedure (Lehmann and Romano, 2005; Holm, 1979),
where the null hypothesis H0 is tested for at each frequency ordered
by p-values p(1) ≤ p(2) ≤· · ·.  Every time H0 is rejected, the procedure
moves on to the next frequency, and only stops at the frequency
L where H0 is finally accepted. This method is robust to Type I
errors, as it is designed to control the family-wise error rate (FWER)
below a desired level  ̨ (Lehmann and Romano, 2005). However, the
stepdown is prone to false negatives. Furthermore, translating the
resulting L into a decision is ambiguous. L may  sometimes be very
small, especially compared to the number of frequencies it is com-
puted for. For instance, if L = 1 for some pairs of variables, should
the connections between these pairs still be included in the graph-
ical model? No substantial research has been carried out to answer
this beyond some case-specific solutions (Medkour et al., 2010).

Multiple hypothesis testing is not limited to the use of the
Stepdown procedure. In other applications, the use of p-value com-
biners is very prevalent. In Genomics, the Westfall–Young min-p
procedure (Westfall and Young, 1993) proves to be very popular,
as it is robust to Type I errors and can also handle correlated data
by estimating the joint H0 distribution through resampling. Other
well-known combiners rely on Bayesian inference, such as Efron’s
empirical Bayes method (Efron, 2003), where prior probabilities are
assigned on the proportion of null and non-null statements and the
false discovery rate is evaluated empirically.

In the context of spectral domain analysis, closed-form analyt-
ical methods tend to be preferred, due to the large computational
cost associated with performing calculations at each frequency.
In this category of methods, The Fisher (Fisher, 1932) and Simes
(Simes, 1986) combiners constitute popular examples, that are
widely used in applications of Computational Statistics, such as

Genetic Epidemiology (Sungho et al., 2009) and Biostatistics (Chen
et al., 2014). They deliver a single scalar that can then be tested on
well-defined distributions, in order to ascertain the significance of
an overall proposition. The use of these p-value combiners has been
relatively rare in graphical modelling of neurological data thus far.
Conventionally, they require that the set of multiple tests are inde-
pendent, which is almost never the case with frequency domain
data. However it is possible to generalise their use for this specific
application.

In this paper, we review various p-values combiners and assess
their suitability for graphical modelling of EEG data compared to
the Stepdown procedure. After reviewing some background results
in frequency domain analysis and multiple hypothesis testing, we
propose a two-step procedure to carry out graphical modelling on
EEG data.

• We  demonstrate how the classical p-value combiners can be used
on a subset of the frequency range that only includes uncorrelated
data, and evidence their performance on simulated data.

• Test combiners can also be used to ascertain the significance of
a graphical model for a sample population. Using EEG measure-
ments from three distinct groups of mental health patients, we
demonstrate how we can aggregate the results of each patient in
all groups in order to obtain a group-wide coloured graphs, which
show the intensity of connections in each group.

• When combining results across a frequency range, each connec-
tion between a pair of channel is evaluated independently. In
doing so, it is important to control for the detection of false positi-
ves when constructing individual graphs. We  show how this can
be managed using a false edge detection adjustment, for both
low-dimensional and larger dimensional data.

2. Background – graphical modelling

Let {Xt} be a 2nd order stationary vector time series, {Xt} ∈ R
p,

t ∈ {0, . . .,  T − 1}, with an associated spectral matrix S(f ) ∈ C
p×p.

Many estimation procedure exist for S(f), here we choose the
multitaper spectral estimate for its good statistical and analytical
properties (Percival and Walden, 1993). It starts with a set of K
orthogonal tapers, satisfying the following property:

T∑
t

ht,kht,l =
{

0 forall k /= l,

1 if k = l.

There are many types orthogonal tapers {ht,k} that are regularly
used in the literature on spectral estimation, we choose here the
Sine tapers, for their ease of implementation (Walden et al., 1995),
defined for all k ≤ K and t ≤ T − 1:

ht,k =
√

2
T + 1

sin
(

(k + 1)�t

T + 1

)
, t ≤ T, k ≤ K

Using the multiple tapers {ht,k}, we can define the following Fourier
transforms Jk(f) for k < K on the data Xt:

Jk(f ) = �t

∑
t

hk,tXte
−i2�ft�t ∈ C

p×1,

which in turn can be used to create an estimate for the spectral
matrix S(f), called the multitaper estimate:

Ŝ(f ) = Ŝ
(mt)
K (f ) = 1

K

K∑
k=1

Jk(f )JH
k (f ). (2.1)

To ensure the invertibility of the matrix S(f), we require that the
number of tapers exceed the dimensions of the data, i.e. K > p.
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