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h  i g  h  l  i g  h  t  s

• Complex  division  extracts  temporal
phase changes.

• Brain  functional  � dataspace  is  recon-
structed  by  CIMRI.

• Both  ICA  and SPM  could  extract  a
task-evoked  functional  map  from  a
4D  fMRI  dataset.

• �ICA-extracted  functional  map
reveals  bidirectional  � responses.

• High-resolution  fMRI  data  enables
function-structure  colocalization.
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a  b  s  t r  a  c  t

Background:  Conventionally,  independent  component  analysis  (ICA)  is performed  on an  fMRI  magnitude
dataset  to  analyze  brain  functional  mapping  (AICA).  By  solving  the  inverse  problem  of  fMRI,  we  can  recon-
struct  the  brain  magnetic  susceptibility  (�)  functional  states.  Upon  the reconstructed  �  dataspace,  we
propose  an  ICA-based  brain  functional  �  mapping  method  (�ICA)  to extract  task-evoked  brain  functional
map.
New  methods:  A complex  division  algorithm  is  applied  to  a timeseries  of  fMRI  phase  images  to extract
temporal  phase  changes  (relative  to an  OFF-state  snapshot).  A computed  inverse  MRI (CIMRI)  model  is
used  to  reconstruct  a 4D  brain  � response  dataset.  �ICA  is  implemented  by  applying  a  spatial  InfoMax
ICA  algorithm  to  the reconstructed  4D  � dataspace.
Results:  With  finger-tapping  experiments  on  a 7T  system,  the  �ICA-extracted  �-depicted  functional  map
is similar  to  the  SPM-inferred  functional  �  map  by a spatial  correlation  of  0.67  ±  0.05.  In  comparison,  the
AICA-extracted  magnitude-depicted  map  is correlated  with  the  SPM  magnitude  map  by 0.81  ±  0.05.  The
understanding  of  the inferiority  of �ICA  to  AICA  for  task-evoked  functional  map  is an  ongoing  research
topic.
Comparison  with  existing  methods:  For  task-evoked  brain  functional  mapping,  we  compare  the data-
driven  ICA  method  with  the  task-correlated  SPM  method.  In particular,  we  compare  �ICA with  AICA
for  extracting  task-correlated  timecourses  and  functional  maps.
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Conclusion:  �ICA  can  extract  a �-depicted  task-evoked  brain  functional  map  from  a  reconstructed  � datas-
pace  without  the  knowledge  about  brain  hemodynamic  responses.  The  �ICA-extracted  brain  functional
� map  reveals  a  bidirectional  BOLD  response  pattern  that is unavailable  (or  different)  from  AICA.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Independent component analysis (ICA) is a data-driven means
to decompose a mixed signal into independent components (IC).
This signal decomposition technique has been widely accepted for
brain functional magnetic resonance imaging (fMRI) data analysis
(Calhoun et al., 2001b, 2002; McKeown et al., 1998; McKeown and
Sejnowski, 1998). Recent research shows that conventional fMRI
data, a magnitude component of complex-valued MRI  data, is a
distorted representation of brain activity due to the magnitude’s
non-negativity (Chen and Calhoun, 2011) and complex modulo
nonlinearity (Chen and Calhoun, 2013, 2015b). Moreover, the MRI
signal is formed by MRI  transformations (e.g., tissue magnetization
in B0 field), bearing a dependence on the MRI  parameters (Chen
and Calhoun, 2015b). In principle, by solving an inverse problem
associated with an fMRI data acquisition, we can reconstruct the
brain tissue magnetic susceptibility property (denoted by �) that
is the underlying magnetic source of the blood oxygenation level
dependent (BOLD) fMRI effect. The reconstructed brain � map  pro-
vides a more direct representation of the intrinsic brain state. With
brain � reconstruction, we can examine intrinsic functional � map-
ping of the brain (Balla et al., 2014; Chen and Calhoun, 2015a; Chen
et al., 2013). We  are motivated by this innovation to decode a recon-
structed brain � dataset by ICA (denoted by �ICA), as reported in
detail herein.

Through the use of a GRE-EPI (gradient-recalled echo planar
imaging) sequence, an fMRI experiment produces a timeseries of
complex T2* images representing snapshot of brain activity. The
complex-valued T2* image formation is subject to a cascade of MRI
transformations, including the tissue magnetization in B0 field and
an intravoxel spin dephasing average in signal detection. The MRI
transformations impose a dependence on parameters such as B0,
flip angle, echo time, and voxel size. Measurement of brain activ-
ity such as a finger tapping should ideally be free from such MRI
transformations. This tenet has prompted further examination of
intrinsic functional � mapping (Balla et al., 2014; Chen and Calhoun,
2012a, 2014a, 2015a). In past decades, the BOLD contrast mecha-
nism (Boxerman et al., 1995a, 1995b; Menon et al., 1992; Ogawa
et al., 1992, 1993) has been widely accepted. The BOLD fMRI dataset
acquired by a GRE-EPI sequence consists of complex-valued T2*
images. However, typically only the magnitude image of BOLD fMRI
data has been used to estimate a brain functional state (Haacke
et al., 1999; Huettel et al., 2009). Recent research has enabled the
brain � reconstruction by computationally solving an inverse MRI
problem (CIMRI, Chen and Calhoun, 2012a, 2014b). It is expected
that the reconstructed brain � data are free from the MRI  techno-
logical dependence, thereby providing a more direct representation
of a brain state.

For a task-evoked BOLD fMRI study, the task paradigm serves as
the external stimuli, and the signal timecourse at a voxel (extracted
from a voxel in 4D T2* dataset) represents its response to the
task stimuli. Given a 4D dataset, the task-correlated functional
map can be generated by the spatial parametric mapping (SPM)
software (http://www.fil.ion.ucl.ac.uk/spm/). The SPM-based func-
tional mapping is based on a model timecourse of the task
paradigm, which is modeled by a convolution of the task waveform
with a canonical hemodynamic response function (hrf). In practice,
variability in both intra- and inter-subject hemodynamics (Arichi
et al., 2012; Buxton et al., 2004; Hu et al., 2010; Li et al., 2000;

Zheng et al., 2002) complicates the modeling of the hrf. In addition,
the task model has also been shown to vary both within and among
individuals.

On the other hand, a data-driven ICA method can be used for
fMRI data analysis (Calhoun et al., 2001a, 2001b; McKeown et al.,
1998; Moritz et al., 2000). Given a 4D dataset acquired from a
BOLD fMRI experiment, we can perform spatial ICA to decom-
pose the timeseries into a collection of pairs of independent spatial
modes (IC modes) and temporal modes (IC timecourses). Of the
ICA-decomposed modes, we  are concerned with the spatial mode
whose timecourse is maximally correlated with the task time-
course. In comparison with the SPM functional map  that involves
a model timecourse, ICA requires no knowledge about the hrf
and signal formation mechanism. Conventionally, ICA is applied to
the magnitude (amplitude) part of a complex-valued BOLD fMRI
dataset (denoted by AICA), decomposing a spatiotemporal data
matrix into a number of spatial independent modes (Calhoun et al.,
2001b; Formisano et al., 2004; Hu et al., 2005; Kansaku et al., 2005;
McKeown et al., 1998; McKeown and Sejnowski, 1998; Xu et al.,
2013a). In this paper, we seek to decode the brain fMRI data by
performing ICA in the reconstructed 4D � dataspace (�ICA), much
in the same way  as has been done for conventional AICA (Calhoun
et al., 2001b). Since the reconstructed 4D � dataset is morpholog-
ically different from the 4D T2* magnitude dataset, we expect to
see the pattern discrepancy between the �ICA- and AICA-extracted
functional maps. It is also of interest to observe the conformance of
brain functional � maps obtained from two different approaches:
the model-dependent SPM and the data-driven �ICA.

2. Theory and methods

We  show the �-based brain functional ICA decomposition
method in Fig. 1, which consists of task-evoked BOLD fMRI data
acquisition, brain � reconstruction, and �ICA (decomposition of the
� dataset by ICA). The conventional AICA method is also included
for the sake of comparison. In what follows we address the dataflow
in Fig. 1 in details.

2.1. BOLD fMRI data acquisition

Assume a task-evoked brain activity that causes a blood mag-
netic susceptibility perturbation, ı�(r,t), which imposes on a static
brain parenchymal tissue state, �0(r). The full �-expressed brain
state is given by

�(r, t) = �0(r) + ı�(r, t), (1)

which represents an original continuous spatiotemporal � process
that is free from MRI  parameter dependence (such as B0 depend-
ence and spatiotemporal discreteness; see below).

Lying inside a scanner (B0), the brain tissue is subject to a mag-
netization process (magnetic polarization along B0) that causes an
intracranial magnetic field disturbance (Chen and Calhoun, 2012b;
Marques and Bowtell, 2005, 2008). This is represented by

b(r, t) = B0�(r, t) ∗ hdipole(r) (2)

where b(r,t) represents the z-component of the �-induced
fieldmap, hdipole(r) denotes the magnetic field (z-component) of a
point magnetic dipole, and * denotes the 3D spatial convolution.
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