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h  i g  h  l  i g  h  t  s

• Dynamic  mode  decomposition  (DMD)  extracts  dynamically  coherent  patterns  from  large-scale  neuronal  recordings.
• Multiple,  distinct  sleep  spindle  networks  are  identified  by  DMD  as  measured  in  subdural  array  recordings.
• Sleep  spindle  networks  are  characterized  by  different  cortical  distribution  patterns,  carrying  frequencies  and  durations.
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a  b  s  t  r  a  c  t

Background:  There  is a broad  need  in  neuroscience  to  understand  and  visualize  large-scale  recordings  of
neural  activity,  big  data  acquired  by tens  or hundreds  of electrodes  recording  dynamic  brain  activity  over
minutes  to  hours.  Such  datasets  are  characterized  by coherent  patterns  across  both  space  and  time,  yet
existing  computational  methods  are  typically  restricted  to analysis  either  in  space  or  in  time  separately.
New  method:  Here  we report  the  adaptation  of  dynamic  mode  decomposition  (DMD),  an  algorithm
originally  developed  for studying  fluid  physics,  to large-scale  neural  recordings.  DMD  is a  modal  decom-
position  algorithm  that  describes  high-dimensional  dynamic  data  using  coupled  spatial–temporal  modes.
The algorithm  is  robust  to  variations  in noise  and  subsampling  rate;  it scales  easily  to  very  large  numbers
of  simultaneously  acquired  measurements.
Results:  We  first validate  the DMD  approach  on  sub-dural  electrode  array  recordings  from  human  subjects
performing  a known  motor  task.  Next,  we  combine  DMD with  unsupervised  clustering,  developing  a  novel
method  to extract  spindle  networks  during  sleep.  We  uncovered  several  distinct  sleep  spindle  networks
identifiable  by  their  stereotypical  cortical  distribution  patterns,  frequency,  and  duration.
Comparison  with  existing  methods:  DMD  is closely  related  to principal  components  analysis  (PCA)  and
discrete  Fourier  transform  (DFT).  We  may  think  of DMD  as  a  rotation  of the  low-dimensional  PCA  space
such that  each  basis  vector  has  coherent  dynamics.
Conclusions:  The  resulting  analysis  combines  key  features  of  performing  PCA  in space  and  power  spectral
analysis  in  time,  making  it particularly  suitable  for  analyzing  large-scale  neural  recordings.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Advances in technology and infrastructure are delivering the
capacity to record signals from brain cells in much greater numbers
and at even faster speeds. This deluge of data is central to answering
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many critical open questions in neuroscience and motivates the
continued development of computational approaches to analyze,
visualize, and understand large-scale recordings of neural activ-
ity. Fortunately, the activity of complex networks of neurons can
often be described by relatively few distinct patterns (for instance,
Broome et al. (2006), Byron et al. (2009), Churchland et al. (2012)
and Machens et al. (2010)). Identifying these spatial–temporal pat-
terns enables the reduction of complex measurements through
projection onto coherent structures, where it is tractable to build
dynamical models and apply machine learning tools for pattern
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analysis. Here we introduce dynamic mode decomposition (DMD)
as a novel approach to explore spatial–temporal patterns in large-
scale neural recordings. The method combines well-characterized
advantages from two of the most powerful data analytic tools in use
today: power spectral analysis in time and principal components
analysis (PCA) in space.

Measurements of neural activity from tens to hundreds of simul-
taneously recorded channels are traces in time that probe a network
with complex dynamics; one principled way to make sense of
such dynamic networks is with modal decomposition (Holmes
et al., 1998). Modal decomposition has been successfully applied in
almost every discipline of science and engineering because it makes
tractable the analysis of very high-dimensional data, reducing them
to combinations of relatively few distinct patterns, or modes.  A par-
ticularly popular modal decomposition tool is PCA, which derives
modes ordered by their ability to account for energy or variance
in the data (Jolliffe, 2005). PCA has already been widely applied in
the study of high-dimensional biological systems; however, it suf-
fers from a few well known drawbacks. In particular, PCA is a static
technique and does not model temporal dynamics of time-series
data explicitly, so it often performs poorly in reproducing dynamic
data, such as recordings of neural activity.

Neural dynamics are well known to be characterized by dynamic
oscillations at many frequency bands, which are implicated in
a variety of neural functions (Buzsáki and Draguhn, 2004; Fries,
2005; Raghavachari et al., 2001; Uhlhaas and Singer, 2010). Most
tools analyzing the frequency content of a signal are related to the
Fourier transform, which transforms time-varying signals into a
spectrum in the frequency domain. Importantly, the power spec-
trum can be computed efficiently using the fast Fourier transform
(FFT) algorithm (Welch, 1967), whose efficient implementation has
contributed to its ubiquitous use. One example of a modal decom-
position in time that goes beyond the Fourier transform is empirical
mode decomposition (EMD), which computes intrinsic oscillatory
modes from time-varying data (Huang et al., 1998). EMD  has been
used to analyze neural data, including cortical local field poten-
tial (Liang et al., 2005) and EEG (Sweeney-Reed and Nasuto, 2007).
There are several extension of frequency-domain analyses that also
support spatial structures (Rehman and Mandic, 2009; Rudrauf
et al., 2006)

A relatively new modal decomposition method is DMD  (Rowley
et al., 2009; Schmid and Sesterhenn, 2008; Schmid, 2010). DMD
was developed initially to study experiments and simulations in
the fluid mechanics community, where it was introduced to reduce
very high-dimensional dynamic data into relatively few coupled
spatial–temporal modes. Importantly, it has been shown that DMD
is related to Koopman spectral analysis, motivating its usefulness in
characterizing dynamics of nonlinear systems (Budišić et al., 2012;
Rowley et al., 2009). Beyond fluid mechanics, DMD  has recently
been applied to the fields of robotics (Berger et al., 2015) and disease
modeling (Proctor and Eckhoff, 2015). In the context of analyz-
ing neural recordings, DMD  modes can be thought of as coherent
structures in the neural activity.

1.1. Summary of computational developments

In Section 2, we describe a set of adaptations of the DMD  that
make it useful in the extraction of spatial–temporal patterns from
neural recordings. The base DMD  algorithm is given in Section 2.1,
where we also note its relationship to more established methods
and compare DMD  modes to PCA modes for an illustrative syn-
thetic dataset. Notably, in contrast to experiments and simulations
in fluid mechanics, neural recordings often have fewer measure-
ments (channels of electrodes) than time snapshots, so in Section
2.2 we describe the construction of an augmented data matrix. We
give intuition and recommendations for how to choose a set of

parameters such that the extracted DMD  modes are interpretable.
For instance, DMD  modes are useful as features in machine learn-
ing algorithms that undercover stereotyped patterns in the data, an
attribute we  leverage for a specific example described in Section
3.3. Examples of ECoG data decomposed by DMD  are given in Sec-
tion 2.3. Section 2.4 describes the DMD  spectrum, which has units
easily interpretable in comparison with traditional power spec-
tral analyses. Next in Section 2.5, we  characterize to what extent
spatial–temporal modes extracted by DMD  from human subdural
recordings are robust to noise and subsampling.

For very large datasets whose dimensionality strains typical
computing resources, DMD  may  be readily implemented using
standard linear algebra routines to take advantage of cluster com-
puting (for example, see Freeman et al. (2014)). We  suggest that
DMD  may be useful in understanding spatial–temporal coherent
patterns in data of escalating scale in neuroscience, including non-
invasive and invasive measurements such as functional MRI, MEG,
neurophysiological recordings with electrode arrays, and optical
imaging of neural activity.

1.2. Summary of experimental demonstrations

To demonstrate DMD’s applicability to large-scale neural recor-
dings, we analyzed sub-dural electrode array recordings from
human subjects in two  different contexts.

1.2.1. Sensorimotor maps
First, we  validated the DMD  approach to derive sensorimotor

maps based on a simple movement task. Our sensorimotor maps
show statistically significant changes in activation over the sensor-
imotor cortex in two  frequency ranges. These changes are distinct
for movements of the hand and tongue, and they are consistent
with results previously described by Miller et al. (2007).

1.2.2. Sleep spindle networks
Next, we leveraged DMD  in combination with unsupervised

clustering techniques to detect and characterize spindle networks
present during sleep; a method to automatically extract these
networks had not been described previously in the literature. Sleep
spindles are distinctive, transient oscillations around 14 Hz that are
characteristic of non-rapid eye movement (NREM) sleep, and their
presence is commonly used to classify sleep stages (De Gennaro
and Ferrara, 2003). Spindles have been the subject of scientific
investigation since the early 1930s and their mechanisms of gener-
ation are now quite well understood (Steriade et al., 1993). In brief,
sleep spindles oscillations are generated in the thalamus and their
electrographic signature arises from thalamacortical connections.
Even so, the role these transient oscillatory events play in brain
function remains unclear. A line of evidence suggests that sleep
spindles facilitate the consolidation of recently acquired memo-
ries (Clemens et al., 2005; Eschenko et al., 2006; Gais et al., 2002;
Johnson et al., 2012). This hypothesis is supported by recent work
demonstrating that sleep spindles can be locally, rather than glob-
ally, synchronous events (Johnson et al., 2012; Nir et al., 2011).

Historically, sleep spindles have been scored by experts on scalp
EEG data. Spindles vary in amplitude, duration, central frequency,
and often concur with other regularly observed sleep features.
Automated detection algorithms typically rely on band-pass filter-
ing the signal followed by an amplitude threshold on some moving
average window (for instance, Ray et al. (2010) and Schimicek et al.
(1994)). Recently, a number of these algorithms were evaluated
against experts and crowd-sourced spindle detectors (Warby et al.,
2014). It is important to point out that all of these approaches only
address spindle detection. The reliable identification and charac-
terization of spatial networks of electrodes showing synchronous
spindle activity has remained a challenge. The structure of sleep
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