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h  i g  h  l  i g  h  t  s

• This  study  proposes  a sparse  filter  band  common  spatial  pattern  (SFBCSP)  for optimizing  the  spatial  patterns.
• Experimental  results  on  two  public  EEG  datasets  (BCI  Competition  III dataset  IVa  and  BCI  Competition  IV IIb)  confirm  the  effectiveness  of  SFBCSP.
• The  optimized  spatial  patterns  by  SFBCSP  give  overall  better  MI  classification  accuracy  in  comparison  with  several  competing  methods.
• Our  study suggests  that  the  proposed  SFBCSP  is  a potential  method  for  improving  the  performance  of MI-based  BCI.
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a  b  s  t  r  a  c  t

Background:  Common  spatial  pattern  (CSP)  has  been  most  popularly  applied  to  motor-imagery  (MI)  fea-
ture extraction  for classification  in brain–computer  interface  (BCI)  application.  Successful  application  of
CSP depends  on  the filter  band  selection  to  a large  degree.  However,  the  most  proper  band  is  typically
subject-specific  and  can hardly  be determined  manually.
New  method:  This  study  proposes  a  sparse  filter  band  common  spatial  pattern  (SFBCSP)  for optimizing
the  spatial  patterns.  SFBCSP  estimates  CSP  features  on  multiple  signals  that  are  filtered  from  raw  EEG
data at a set  of  overlapping  bands.  The  filter  bands  that  result  in significant  CSP features  are  then  selected
in a supervised  way  by  exploiting  sparse  regression.  A support  vector  machine  (SVM)  is implemented  on
the  selected  features  for  MI  classification.
Results:  Two  public  EEG  datasets  (BCI  Competition  III dataset  IVa and  BCI  Competition  IV IIb)  are  used  to
validate the  proposed  SFBCSP  method.  Experimental  results  demonstrate  that  SFBCSP  help  improve  the
classification  performance  of  MI.
Comparison  with  existing  methods:  The  optimized  spatial  patterns  by  SFBCSP  give overall  better  MI  clas-
sification  accuracy  in  comparison  with  several  competing  methods.
Conclusions:  The  proposed  SFBCSP  is a potential  method  for improving  the  performance  of MI-based  BCI.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A brain–computer interface (BCI) is an advanced commu-
nication approach that assists to establish the capabilities of
environmental control for severally disabled people (Wolpaw et al.,
2002; Gao et al., 2014; Hoffmann et al., 2008; Jin et al., 2015; Zhang
et al., 2012; Rutkowski and Mori, 2015; Chen et al., 2015). BCI can
translate a specific brain activity into computer command, thereby
building a direct connection between human brain and external
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device. One of the most popularly adopted brain activities is event-
related (de)synchronization (ERD/ERS) (Pfurtscheller and Neuper,
2001; Li et al., 2013), and can be typically measured by electroen-
cephalogram (EEG). ERD/ERS can be quantified by band-power
changes occurring when subjects do motor-imagery (MI) tasks, i.e.,
imagine their limbs (left hand, right hand and foot) (Pfurtscheller
et al., 2006; Li and Zhang, 2010; Koo et al., 2015).

So far, a large number of methods have been introduced to EEG
analysis for various applications (Li et al., 2015, 2008; Arvaneh
et al., 2013; Zhang et al., 2012, 2014; Cong et al., 2010; Jin et al.,
2013; Zhang et al., 2015b). Common spatial pattern (CSP) is a very
efficient method and has been mostly applied to MI  feature extrac-
tion (Ramoser et al., 2000; Higashi et al., 2012). The variance of
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Fig. 1. Illustration of the proposed sparse filter band common spatial pattern (SFBCSP) algorithm for motor-imagery classification.

Table 1
Classification errors (%) obtained by the CSP, FBCSP, DFBCSP, and SFBCSP methods, respectively, for BCI Competition III dataset IVa. For each subject, the lowest error is
marked in boldface.

Subject CSP FBCSP DFBCSP SFBCSP

aa 20.11 ± 3.82 9.61 ± 2.14 9.68 ± 2.36 8.46 ± 2.10
al  2.11 ± 1.45 2.18 ± 1.72 1.54 ± 1.21 1.43 ± 1.09
av  29.61 ± 4.16 27.46 ± 6.67 24.86 ± 3.22 22.57 ± 4.87
aw  6.96 ± 2.32 2.79 ± 1.53 2.18 ± 1.38 1.97 ± 1.24
ay  7.86 ± 2.86 5.46 ± 2.88 4.71 ± 2.35 5.31 ± 2.96
Average 13.33 ± 2.92 9.50 ± 2.99 8.59 ± 2.10 7.95 ± 2.45
p-value p < 0.05 p = 0.14 p = 0.27 –

Table 2
Classification errors (%) obtained by the CSP, FBCSP, DFBCSP, and SFBCSP methods, respectively, for BCI Competition IV dataset IIb. For each subject, the lowest error is marked
in  boldface.

Subject CSP FBCSP DFBCSP SFBCSP

B0103T 23.44 ± 5.88 22.50 ± 4.61 22.06 ± 4.48 21.85 ± 4.79
B0203T 44.44 ± 6.97 44.06 ± 6.05 42.75 ± 5.89 41.25 ± 5.84
B0303T 47.38 ± 8.10 46.25 ± 6.95 44.81 ± 6.50 44.19 ± 6.09
B0403T 1.94 ± 1.50 1.13 ± 1.13 1.19 ± 1.43 1.15 ± 1.23
B0503T 11.81 ± 4.77 9.56 ± 2.42 7.56 ± 2.14 7.94 ± 2.35
B0603T 30.63 ± 5.60 21.94 ± 3.44 18.31 ± 3.17 17.68 ± 3.62
B0703T 16.56 ± 4.85 13.50 ± 2.90 10.50 ± 1.83 9.75 ± 1.25
B0803T 13.44 ± 3.02 11.25 ± 2.78 11.38 ± 2.93 11.13 ± 3.21
B0903T 18.25 ± 4.63 16.12 ± 3.39 15.25 ± 3.33 14.50 ± 3.61
Average 23.10 ± 5.04 20.70 ± 3.74 19.31 ± 3.52 18.83 ± 3.55
p-value p < 0.01 p < 0.01 p < 0.05 –

band-pass filtered signals has been known to be equal to the band-
power. Since CSP finds spatial filters to maximize the variance of
the projected signal from one class while minimizing it for another
class, it provides a natural approach to effectively estimate the dis-
criminant information of MI  (Blankertz et al., 2008). However, to
guarantee the successful application of CSP to MI classification,
a pre-specified filter band is required to accurately capture the
band-power changes resulting from ERD/ERS (Ang et al., 2008).
Unfortunately, the most proper filter band is typically subject-
specific and can hardly be determined in a manual way. A poor
selection of the filter band may  result in low effectiveness of CSP
(Sun et al., 2010).

Although a wide filter band (i.e., 8–30 Hz) was usually adopted
for CSP in MI  classification, an increasing number of studies sug-
gested that the optimization of filter band could significantly
improve classification accuracy (Ang et al., 2008; Sun et al., 2010;
Lemm et al., 2005; Dornhege et al., 2006; Novi et al., 2007). So
far, two types of approaches have been mainly proposed to fix the
problem of filter band selection. One is simultaneous optimization

of spectral filters within the CSP (Lemm et al., 2005; Dornhege et al.,
2006; Higashi and Tanaka, 2013) while another one is selection of
significant CSP features from multiple frequency bands (Ang et al.,
2008; Novi et al., 2007; Thomas et al., 2009).

By extending CSP to state space, common spatio-spectral pat-
tern (CSSP) (Lemm et al., 2005) was  proposed to optimize a simple
FIR filter by employing a temporal delay within CSP. A further
extension of CSSP is called common sparse spectral spatial pattern
(CSSSP) (Dornhege et al., 2006), which optimizes an adaptive FIR fil-
ter simultaneously with CSP. More recently, (Higashi and Tanaka,
2013) proposed to simultaneously learn multiple FIR filters and the
associated spatial weights by maximizing a cost function extended
from CSP.

On the other hand, an alternative approach is sub-band common
spatial pattern (SBCSP) (Novi et al., 2007). Instead of simultaneously
optimizing a spectral filter within CSP, SBCSP filtered EEG signals
using multiple filter bands and extracted the sub-band CSP fea-
tures for classification with score fusion. Although SBCSP achieved
superior classification accuracy over both CSSP and CSSSP
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