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• We  validate  a Psychophysiological  model  (PsPM)  to infer  anticipatory  sympathetic  arousal  from  changes  in  skin  conductance.
• We  optimise  the inversion  of  this  PsPM  in  terms  of  a  constrained  non-linear  dynamic  causal  model.
• This  method  allows  a quantification  of fear  memory  in  humans.
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a  b  s  t  r  a  c  t

Anticipatory  sympathetic  arousal  is  often  inferred  from  skin  conductance  responses  (SCR)  and  used  to
quantify  fear  learning.  We  have  previously  provided  a model-based  approach  for  this  inference,  based
on  a quantitative  Psychophysiological  Model  (PsPM)  formulated  in  non-linear  dynamic  equations.  Here
we seek  to optimise  the  inversion  of  this  PsPM.  Using  two  independent  fear  conditioning  datasets,  we
benchmark  predictive  validity  as the sensitivity  to  separate  the  likely  presence  or  absence  of  the uncon-
ditioned  stimulus.  Predictive  validity  is optimised  across  both  datasets  by  (a)  using  a  canonical  form
of  the  SCR  shape  (b) filtering  the  signal  with  a  bi-directional  band-pass  filter  with  cut off  frequencies
0.0159  and  5  Hz,  (c)  simultaneously  inverting  two trials  (d) explicitly  modelling  skin conductance  level
changes  between  trials (e)  the  choice  of  the  inversion  algorithm  (f)  z-scoring  estimates  of  anticipatory
sympathetic  arousal  from  each  participant  across  trials.  The  original  model-based  method  has  higher
predictive  validity  than conventional  peak-scoring  or  an alternative  model-based  method  (Ledalab),  and
benefits  from  constraining  the  model,  optimised  data  preconditioning,  and  post-processing  of  ensuing
parameters.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Central states of sympathetic arousal (SA) are often inferred
from skin conductance responses (SCR), for example to quantify
associative learning in the context of fear conditioning (Morris
and Dolan, 2004; Delgado et al., 2006; Boucsein, 2012). This infer-
ence relies on assumptions of how SA and SCR relate to each
other. Psychophysiological Models (PsPM) explicitly describe how
sudomotor nerve activity generates observable SCR (a peripheral
model), and constrain at what points in time sudomotor nerve
activity can be generated by experimentally induced SA (a neu-
ral model) (Bach and Friston, 2013). The combined forward model
SA SCR can be turned backwards, to arrive at the relation SA
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SCR. In statistics, this process is often termed “model inversion”,
and it provides probabilistic estimates of the most likely SA, given
SCR. Model-based estimates of SA are more sensitive than estimates
from conventional analysis techniques such as SCR peak scoring, as
we have shown in previous theoretical (Bach and Friston, 2013) and
empirical work (Bach et al., 2009, 2010a, 2011a; Bach, 2014). They
are also more sensitive than model-based methods relying only on
a peripheral model, without a constraining neural model (Benedek
and Kaernbach, 2010; Bach, 2014).

Models for evoked SCR, generated by short experimental events
with a known latency, have been developed, refined, and evaluated,
in the framework of General Linear Convolution Modelling (GLM)
(Bach et al., 2009, 2010b, 2013; Bach, 2014). Yet, one of the most
common applications of SA/SCR is to quantify associative learning
in fear conditioning. When a conditioned stimulus (CS+) is pre-
sented, sympathetic arousal occurs in preparation for the upcoming
unconditioned stimulus (US) (Balleine and Killcross, 2006). Because
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the CS usually extends over time, the onset of preparatory SA is
not known and may  vary from trial to trial which precludes using
linear inversion methods such as GLM. We  have previously devel-
oped a model-based approach for estimating amplitude, onset, and
duration of anticipatory SA (Bach et al., 2010a). This model is for-
mulated in terms of non-linear dynamic equations, and inverted by
a variational Bayes algorithm (VBA) developed in the framework of
DCM (Daunizeau et al., 2009). Estimates from this method can bet-
ter distinguish CS+ from CS− trials, compared to a GLM approach
that assumes constant latency, and also compared to standard peak
scoring.

As with any method, this approach involves certain techni-
cal choices that are beyond the known biophysical properties of
the studied system. Here, we revisit some of these customisable
settings with the aim of optimising the method. We  compare (a)
response functions for the peripheral model, (b) filter parameters
applied to raw SCR data, (c) number of simultaneously inverted tri-
als (d) inclusion of SCL, (e) inversion algorithms and (f) removing
between subject variance from SA estimates.

We benchmark the sensitivity of our method by its ability to cor-
rectly infer known states of arousal in humans during fear learning.
Because SA cannot be observed directly, we rely on the assumption
that presentations of CS+ categorically elicit stronger SA than CS−,
in a fear learning paradigm with many trials and CS that are easy
to learn. We  term the ability to differentiate neural states from
CS+ and CS− predictive validity. For each set of SA estimates, we
compute the negative log likelihood that SA estimates for CS− and
CS+ trials are drawn from two different distributions rather than
the same distribution, analogous to a paired t-test. We  can then
calculate the log Bayes factor as difference between negative log
likelihood of the evaluated model against a reference model. In this
context, lower log Bays factor implies higher predictive validity for
the evaluated model. As reference model we used inversion with
the current default settings. The algorithm evaluated here is avail-
able as part of the Matlab suite PsPM (incorporating SCRalyze) at
http://pspm.sourceforge.net.

2. Material and methods

2.1. Design and data

2.1.1. General settings
We  analysed data recorded from two independent experiments

using a discriminant delay fear conditioning paradigm. Data from
experiment (1) [HRA] are published (Bach et al., 2010a); data
from experiment (2) [SCBD/SC1F] are yet unpublished. Trial order
was pseudo-randomised. CSs were presented for 4 s, and a rein-
forced CS+ co-terminated with the US. Both experiments were
programmed in Cogent 2000 (Version 1.25; www.vislab.ucl.ac.uk/
Cogent) and run on Matlab 6.5 and 8.1, respectively.

In both experiments, 50% of the CS+ were reinforced with a
train of electric square pulses (Experiment 1: 500 Hz, Experiment
2: 50 Hz) with individual square pulse width of 0.5 ms,  deliv-
ered via a constant-current stimulator (Digitimer DS7A, Digitimer,
Welwyn Garden City, UK) through a pin-cathode/ring-anode con-
figuration at the dominant forearm. Before the experiment, shock
intensity was set to a clearly uncomfortable level. First, electric
current was increased from an undetectable intensity until the par-
ticipant reported that stimulation was above the pain threshold.
Then, shocks with a randomly set intensity below the maximum
intensity were applied while the participant rated discomfort on a
0 (no shock detected) to 100 (painful) scale. Finally, the stimulation
was set just below the pain threshold. This resulted in a current of
0.90 ± 0.63 mA  (mean ± SD) for experiment 1 and 6.31 ± 8.20 mA
for experiment 2. Skin conductance was recorded as described

previously (Bach et al., 2009, 2010a) on thenar/hypothenar of the
non-dominant hand using 8 mm Ag/AgCl cup electrodes (EL258,
Biopac Systems Inc., Goleta, CA, USA) and 0.5%-NaCl electrode
paste (GEL101; Biopac) (Hygge and Hugdahl, 1985). We recruited
healthy unmedicated participants from the general population who
received monetary compensation for their participation. All par-
ticipants gave written informed consent, and the study protocols,
including the form of consent, were approved by the competent
research ethics committees.

2.1.2. Experiment 1
20 individuals between 18 and 30 years (10 female, mean

age ± standard deviation: 22.2 ± 4.0 years) took part in experiment
1. CSs were a blue and an orange filled circle on a black background
that were presented on each trial on the left or on the right of the
screen centre. Participants were tasked to indicate the colour with
the cursor up/cursor down key. Colour-key and colour-CS associ-
ations were balanced across participants. Inter-trial interval (ITI)
was randomly drawn in each trial from 7, 8, 9, 10, or 11 s. At
the end of 20 randomly selected trials (10 CS−,  5 CS+ with US, 5
CS+ without US), participants were asked to rate “’How likely did
you think you would get a shock?” using a horizontal visual ana-
logue scale (VAS) from 0% to 100%. There were 90 trials for each
CS type in 4 blocks. The whole experiment lasted about 45 min.
For SCR recordings, constant voltage (2.5 V) was provided by a
custom-build coupler, whose output was  converted to an optical
pulse with a minimum frequency of 100 Hz to avoid aliasing, dig-
itally converted (Micro1401, CED, Cambridge, UK), and recorded
(Spike2, CED).

2.1.3. Experiment 2
30 individuals between 18 and 35 years (15 female, mean

age ± standard deviation: 25.3 ± 4.1 years) participated in exper-
iment 2. 20 data sets were recorded during a functional magnetic
resonance imaging (fMRI) experiment, and 10 data sets were
recorded outside the MRI  environment. In both data sets, partic-
ipants underwent fear learning with the same stimuli. CSs were
computer generated sine sounds of either single frequency (type 1:
CS1+, CS1−) or triads of three different frequencies with a minor
and major mode (type 2: CS2+, CS2−). For type 1 sounds, partici-
pants were asked to indicate the pitch (high, low) in each trial and
for type 2 sounds to choose the correct mode (minor, major) with
the left/right keys using the dominant hand. For half of the par-
ticipants, sounds from both types were in a low frequency range
(110 to 218 Hz) and for the other participants sounds were in a
high frequency range (245 to 494 Hz). In the fMRI data set there
were 96 trials in 4 blocks, and in the remaining data sets 128 tri-
als in 2 blocks, with the same number of single sine and triad
sounds. Within each block, 50% of trials were CS+ and 50% CS−.
Inter-trial interval (ITI) was randomly drawn in each trial from 7,
9, or 11 s. The experiment outside the fMRI scanner lasted about
35 min  while the fMRI experiment included 4 additional control
blocks with novel unreinforced sounds, summing up to 45 min.
These control trials are not included in the present analysis. For
SCR acquisition in the fMRI scanner, we recorded data at 1000 Hz
sampling frequency with a Biopac MP150 data acquisition sys-
tem coupled to a GSR-100 C signal amplifier (BIOPAC Systems, Inc.
Camino Goleta, CA). Outside the scanner, data were recorded at
200 Hz sampling rate with an integrated SCR coupler/amplifier
(LabLinc V71-23, Coulbourn) and AD converter (DI-149/Windaq,
Dataq). Differences between the two  experimental environments
were tested in a two-way ANOVA of CS (CS+, CS−)  and environ-
ment, indicating no interaction, F(1,56) = 0.82, p > 0.05. Thus, for all
subsequent analyses, data from both environments were pooled.
Temperature and relative humidity of the experimental chamber
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