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• The  STAR  algorithm  addresses  channel-specific  noise  that  is  sparse  in  time.
• It removes  electrode  or sensor  noise  and  certain  forms  of  myogenic  artifact.
• In  contrast  to other  techniques,  few  data  are lost  and the  dimensionality  of the  data  is  preserved.
• The  STAR  algorithm  complements  component  analysis  techniques  such  as ICA.
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a  b  s  t  r  a  c  t

Background:  Muscle  artifacts  and  electrode  noise  are  an  obstacle  to interpretation  of EEG  and  other  elec-
trophysiological  signals.  They  are  often  channel-specific  and  do not  fully benefit  from  component  analysis
techniques  such  as  ICA,  and  their  presence  reduces  the dimensionality  needed  by those  techniques.  Their
high-frequency  content  may  mask  or masquerade  as gamma  band  cortical  activity.
New  method:  The  sparse  time  artifact  removal  (STAR)  algorithm  removes  artifacts  that  are  sparse  in space
and time.  The  time  axis  is  partitioned  into  an  artifact-free  and  an  artifact-contaminated  part,  and  the
correlation  structure  of  the  data  is  estimated  from  the  covariance  matrix  of  the  artifact-free  part.  Artifacts
are  then  corrected  by projection  of  each  channel  onto  the  subspace  spanned  by the  other  channels.
Results:  The  method  is  evaluated  with  both  simulated  and  real data,  and  found  to be highly  effective  in
removing  or  attenuating  typical  channel-specific  artifacts.
Comparison  with  existing  methods:  In  contrast  to  the  widespread  practice  of  trial  removal  or  channel
removal  or  interpolation,  very  few  data  are  lost.  In contrast  to  ICA  or other  linear  techniques,  processing
is  local  in time  and affects  only  the  artifact  part, so  most  of  the  data  are  identical  to the  unprocessed  data
and  the  full  dimensionality  of  the  data  is  preserved.
Conclusions:  STAR  complements  other  linear  component  analysis  techniques,  and  can  enhance  their
ability  to  discover  weak  sources  of  interest  by increasing  the number  of  effective  noise-free  channels.

© 2016  The  Author.  Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Among the many sources of noise and artifact that plague stud-
ies involving human and animal electrophysiology, some affect
only one channel at a time. This paper addresses such channel-
specific artifacts, leaving aside other types that impinge on several
channels such as eyeblink, heartbeat or background neural activ-
ity. Signals recorded by multichannel recording techniques such as
electroencephalography (EEG), magnetoencephalography (MEG),
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electrocorticography (ECoG), invasive electrode arrays or optical
techniques are related to underlying sources by a linear mixing
process:

xj(t) =
∑

i

si(t)uij, (1)

where t is time, si(t) are the source signals, and uij are mixing
coefficients. We  call “channel-specific” a source si for which the
uij are zero for all channels j except one.

Channel-specific noise includes electrode contact noise, pulsa-
tion noise, and certain forms of muscle artifact in EEG, as well as
sensor noise in MEG  or other techniques. Electrode-tissue con-
tact artifacts are usually temporally sparse, occurring as isolated
events or bursts of events that affect one channel at a time.
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Muscle artifacts may  also be channel-specific if they are produced
by motor units proximal to a single electrode (Yilmaz et al., 2014),
although activity from deeper muscles may  affect multiple elec-
trodes. Such artifacts often have a spectrum that extends to high
frequency, but they may  also include low-frequency components
that overlap with low-frequency cortical activity (Goncharova et al.,
2003), so that spectral filtering is not sufficient to eliminate them.
Electromyogenic noise is particularly troublesome as it can be con-
fused with high-frequency cortical activity (Yuval-Greenberg et al.,
2008; Whitham et al., 2007; Muthukumaraswamy, 2013; Yilmaz
et al., 2014), particularly as muscle activity may  correlate with cog-
nitive state (Whitham et al., 2008; Yuval-Greenberg et al., 2008;
McMenamin et al., 2011). Cephalic skin potential (Corby et al., 1974)
may  also covary with cognitive state, and contact noise may  corre-
late with behavior.

A standard approach to dealing with spatio-temporally sparse
artifacts is to discard either the offending channel, or the offend-
ing time interval or trial (Junghöfer et al., 2000). This entails loss
of data, particularly if artifacts affect multiple channels and/or are
widely distributed in time, and it also complicates analysis and
interpretation stages, that need to be made tolerant to the missing
data.

Another approach is to apply multichannel linear analysis
techniques such as independent component analysis (ICA), beam-
forming, or joint diagonalization (JD) (de Cheveigné and Parra,
2014) to isolate noise components. Component signals yk(t)
obtained by these methods are related to observations as:

yk(t) =
∑

j

xj(t)wjk, (2)

where t is time and the wjk are weights. The J observation channels
span a space that contains all such linear combinations, and the
dimensionality of the data is the number of dimensions of this space
(J or less). Components belong to this space. Different methods
(PCA, ICA, beamforming, etc.) differ in how they find the appropri-
ate weights to apply to the data. ICA in particular has been proposed
to remove artifacts including myogenic (Delorme et al., 2007; Ma
et al., 2012; Crespo-Garcia et al., 2008).

The appeal of these linear techniques is that a noise source xi
can potentially be perfectly canceled: a component yk is insensi-
tive to source i as long as

∑
juijwjk = 0, where uij are the mixing

coefficients and wjk the component weights (Eqs. (1) and (2)). With
high-dimensional data (lots of channels) there is considerable flex-
ibility in satisfying this constraint, and the strength of analysis
algorithms such as ICA lies in their ability to find such sets of
weights. However, if a noise source is specific to a single channel j,
it can only be cancelled by setting wjk to zero for every component
k, effectively discarding that channel. In this situation, component
analysis offers little over the time-honored practice of discarding
noisy channels.

Component analysis itself is vulnerable to channel-specific noise
because it relies on the dimensionality of the data (determined by
the number of channels) to resolve the various sources. If channels
are discarded due to artifacts, analysis may  be impaired, whereas if
they are not discarded (due to lack of knowledge or the need to con-
serve enough channels), the artifact is injected into the extracted
components via Eq. (2). The presence of artifacts may also interfere
with the ability of the algorithm to find the optimal wjk. For exam-
ple an algorithm such as CSP (Koles et al., 1990), that searches for
components that differ in power between two intervals, may  lock
on to an artifact that is present in one interval but not the other.
Finally, the artifacts may  interfere with the ability to estimate the
topography associated with cortical activity, possibly compromis-
ing source modeling. Channel-specific noise thus limits the ability

of linear methods to improve the signal to noise ratio (SNR) of weak
brain activity.

These considerations lead us to focus on channel-specific noise,
leaving other techniques such as ICA, JD, or beamforming to deal
with noise sources that impinge on multiple electrodes. This is
important scientifically, to obtain a more accurate picture of brain
activity, and also for applications such as brain-computer interfaces
(BCI), prediction of epileptic seizures, wearable brain-monitoring
devices, and so on. The method described here is effective, fully
automatic, and amenable to an online implementation for applica-
tions that involve realtime monitoring.

2. Methods

2.1. Signal model and assumptions

Each observation xj(t) is the sum of signals from multiple sources
i within the brain or the environment (Eq. (1)). We  make sev-
eral restrictive assumptions. Each noise source ni(t) affects only
one particular channel (assumption 1). Noise activity is temporally
sparse so that artifacts on different channels do not temporally
overlap (assumption 2), and for a significant proportion of time
the data are artifact-free (assumption 3). Finally, we assume that
in the absence of artifacts the data are linearly dependent such
that each channel belongs to the subspace spanned by the other
channels. In other words for each channel j there exist ajj′ such
that xj(t) =

∑
j′ /=  jajj′ xj′ (t) (assumption 4). This is plausible for neu-

rogenic activity due to source-to-sensor mixing. Of course, many
kinds of noise do not meet these assumptions; the focus here is on
those that do. In real data, these assumptions will be met  only as
an approximation,  for example because of non-stationarity of the
brain and noise processes underlying the data. The quality of the
outcome depends on the quality of the approximation.

2.2. The STAR algorithm

The algorithm proceeds in two  phases. The first phase detects
the presence of channel-specific artifacts, the second phase corrects
them.

Phase 1. The covariance matrix of the data is estimated, and
from it is calculated the matrix A that projects each channel on
the subspace spanned by the other channels. The projection x̄j(t)
of channel j is the weighted sum of the channels j′ /= j that best
approximates xj(t). In the absence of an artifact we  should have
x̄j(t) − xj(t) = 0 as a result of the linear dependence assumption, so a
significant deviation indicates the presence of an artifact. Values of
x̄j(t) − xj(t) are fit by a zero-mean Gaussian distribution, and values
eccentric from this distribution (relative to a predefined threshold
�) are flagged as artifactual. This is repeated for all channels, and the
union of eccentric time samples is labeled as artifact-contaminated.
The covariance matrix is initially estimated from the entire data,
and subsequently reestimated on the part of data labeled as artifact-
free. A few iterations of this process lead to a stable partition of the
time axis between artifact-free and artifact-contaminated parts.

Phase 2. The artifact-contaminated part is further divided
according to which channel is most degraded at each time sample.
For this purpose, a second eccentricity measure is calculated for
each channel as the ratio of instantaneous power to power aver-
aged over the artifact-free portion. The channel with the highest
score at a given time sample “owns” that sample, and its data are
replaced with its projection on the subspace spanned by the other
channels, using projection coefficients calculated from the artifact-
free part. Data replacement occurs only at the part corresponding
to the artifact: at other times the data are left intact, so most of the
data remain untouched by the processing.
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