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h i g h l i g h t s

• Phase clustering can bias estimates of phase–amplitude cross-frequency coupling (PAC).
• We propose a modified version of PAC that effectively removes the bias (dPAC).
• Performance of dPAC is demonstrated via various simulations that manipulate the bias.
• dPAC is compared with other CFC measures and applied on monkey and rat recordings.
• Results of both simulated and real data show that dPAC outperforms PAC.
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a b s t r a c t

Background: Cross-frequency coupling methods allow for the identification of non-linear interactions
across frequency bands, which are thought to reflect a fundamental principle of how electrophysiological
brain activity is temporally orchestrated. In this paper we uncover a heretofore unknown source of bias in
a commonly used method that quantifies cross-frequency coupling (phase–amplitude-coupling, or PAC).
New method: We demonstrate that non-uniform phase angle distributions – a phenomenon that can
readily occur in real data – can under some circumstances produce statistical errors and uninterpretable
results when using PAC. We propose a novel debiasing procedure that, through a simple linear subtraction,
effectively ameliorates this phase clustering bias.
Results: Simulations showed that debiased PAC (dPAC) accurately detected the presence of coupling. This
was true even in the presence of moderate noise levels, which inflated the phase clustering bias. Finally,
dPAC was applied to intracranial sleep recordings from a macaque monkey, and to hippocampal LFP data
from a freely moving rat, revealing robust cross-frequency coupling in both data sets.
Comparison with existing methods: Compared to dPAC, regular PAC showed inflated or deflated estimations
and statistically negative coupling values, depending on the strength of the bias and the angle of coupling.
Noise increased these unwanted effects. Two other frequently used phase–amplitude coupling methods
(the Modulation Index and Phase Locking Value) were also affected by the bias, though allowed for
statistical inferences that were similar to dPAC.
Conclusion: We conclude that dPAC provides a simple modification of PAC, and thereby offers a cleaner
and possibly more sensitive alternative method, to more accurately assess phase–amplitude coupling.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neurophysiological signals are strongly oscillatory (Varela et al.,
2001; Buzsáki and Draguhn, 2004; Wang, 2010). Moreover, several
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theoretical predictions and empirical findings demonstrate that
interactions among activities in different frequencies are important
for information processing and transmission (Lakatos et al., 2005;
Palva et al., 2005; Jensen and Colgin, 2007; Canolty and Knight,
2010). However, standard time–frequency analyses (such as Mor-
let wavelet convolution and the short-time Fourier transform) treat
each frequency of oscillatory activity as an independent process and
therefore preclude quantification of interactions across frequency
bands.
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Cross-frequency coupling (CFC) analyses are specifically
designed to uncover relationships among dynamics at different fre-
quencies. This “nesting” of oscillations has been shown to occur
in both humans and animals (Jensen and Colgin, 2007; McGinn
and Valiante, 2014), and to relate to various task-related processes
(Canolty et al., 2006), including perception (Händel and Haarmeier,
2009; Voytek et al., 2010; Gross et al., 2013), cognitive control
(Cohen et al., 2009; Dürschmid et al., 2013), memory (Sauseng
et al., 2008; Tort et al., 2009; Axmacher et al., 2010; Belluscio
et al., 2012), and emotional processing (Popov et al., 2012). Cross-
frequency coupling has also been related to spontaneous activity
during sleep (Cox et al., 2014) and “default-mode” resting state
(Foster and Parvizi, 2012). In general, cross-frequency coupling
is proposed to reflect a common, fundamental principle of how
neurophysiological processes in the brain can be temporally orga-
nized across different frequency bands (Lisman, 2005; Canolty and
Knight, 2010), and thus, different time scales.

There are several quantitative methods to identify cross-
frequency coupling (Tort et al., 2010). Most methods are based
on examining the distribution of power values at a relatively
higher frequency band with respect to the phase values at a rel-
atively lower frequency band (phase–amplitude coupling; lower
frequency power values can be used instead of phase, but the
concept is the same). The activities from both frequency bands
are simultaneously recorded, typically from the same electrode
(or from different electrodes in the case of long-range interareal
cross-frequency coupling). The null hypothesis in this analysis
approach is that the distribution of higher-frequency power val-
ues over lower-frequency phase values is uniform; deviations from
this uniform distribution indicate the presence of cross-frequency
coupling. The various cross-frequency coupling analysis methods
differ mainly in how this power-by-phase distribution is created or
statistically evaluated.

Many cross-frequency coupling analyses are assumed to be
insensitive to dynamics within the modulating, lower-frequency
band, such as a non-uniform occurrence of phase values (Aru
et al., 2014). Such non-uniformity can occur when the oscillatory
phenomenon under investigation does not resemble an idealized
sine wave, and the relative contribution of different phases to the
sampled signal is uneven; this will be demonstrated below. It is
generally believed that this situation is adequately remedied by
permutation testing, in which random shuffling ensures that power
values and phase values are randomly coupled, thus accounting for
possible asymmetries in the distribution of power or phase that
could artifactually bias the estimate of cross-frequency coupling
(Cohen, 2014).

The purpose of this paper is to show that one commonly used
CFC analysis method in particular (phase–amplitude coupling or
PAC; Canolty et al., 2006) can be sensitive to within-frequency non-
uniform phase angle distributions, which may introduce biases
in some circumstances. After describing two other methods for
assessing CFC (MI and PLV), we introduce the bias and demon-
strate how it might arise in neural time series data. We then
introduce a simple but effective debiasing correction and demon-
strate that this approach successfully minimizes the bias in PAC,
thus allowing closer approximations of true cross-frequency cou-
pling. Matlab scripts to produce the simulations and perform the
analyses described in this paper are available at github (https://
github.com/joramvd/dPAC).

2. Three methods to analyze cross-frequency
phase–amplitude coupling

In this paper, we focus on three established methods of ana-
lyzing cross-frequency coupling of phase-modulated power (we

hereafter use “CFC” to refer to this type of cross-frequency cou-
pling). We decided to focus on these three methods because they
are the most commonly used methods in the literature. In the
‘Implications and limitations’ section we speculate on the relevance
of our findings for other methods.

2.1. Phase–Amplitude Coupling (PAC)

The Phase–Amplitude Coupling (PAC) method was popularized
by Canolty and colleagues (Canolty et al., 2006). In PAC, vectors in
polar space are defined by the angle from the frequency for phase,
and a length defined by the power from the frequency for power.
Each vector corresponds to a time point, and the length of the aver-
age vector is taken as a quantification of CFC. The null hypothesis
– that there is no relationship between power and phase – would
produce an average vector length of zero. In contrast, a non-uniform
distribution of power-adjusted phase angles in polar space would
produce a PAC value that is greater than zero. Mathematically, PAC
is defined by:

PAC =
∣∣∣∣∣
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where n signifies the total number of time points, at the amplitude
(or power) of the modulated frequency (frequency for power) and
ϕt the phase of the modulating frequency (frequency for phase) at
time point t; i is the imaginary operator. As can be seen, the phase
angles are first converted to complex space by the Euler transform(

eik
)

.
The statistical significance of the PAC value can be determined

by comparing it against a distribution of surrogate PAC values gen-
erated via permutation testing, in which the power values are
shuffled with respect to the phase values. The idea is that the shuf-
fling not only allows for statistical evaluation, but also accounts for
possible outliers or non-uniform phase angle distributions (Cohen,
2014, Chapter 30).

2.2. Modulation Index

A second CFC measure that is commonly used is the Modulation
Index (MI), as proposed by Tort and colleagues (Tort et al., 2010).
The logic behind MI is to discretize the phase angle time series (of
the frequency for phase) into N phase bins, and to compute the
average power of the modulated frequency for power in each bin
j. The resulting phase–amplitude histogram should show a non-
uniform distribution of power over the N phase bins. To quantify
coupling, the MI computes deviation from a uniform distribution
using information theory (see Tort et al., 2010 for details):

MI = DKL (P, U)
log (N)

(2)

where N signifies the number of phase bins, and DKL is the
Kullback–Leibler distance between the phase distribution P and the
uniform distribution U:

DKL (P, U) = log (N) +
N∑

j=1

P (j) log [P (j)] (3)

As with PAC, the statistical significance of MI is commonly deter-
mined by shuffling the power time series with respect to the phase
angle time series, and re-evaluating the distribution of power over
phase bins; because the phase-power relationship is now random,
this should generate a null-distribution of MI values under the null-
hypothesis of a uniform distribution of power over phase bins.
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