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h  i g  h  l  i  g  h  t  s

• Interpretability  limits  of  functional  connectivity  measures  identified  with  modeling.
• Most  connectivity  measures  can  change  with  no  brain  region  interaction  change.
• Decomposition  of  correlation  reveals  covariance  as  an  important  check  on results.
• Empirical  tests  demonstrate  that  covariance  and  correlation  often  differ  in practice.
• Even  when  results  are  identical  between  methods  covariance  provides  an  important  check.
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a  b  s  t  r  a  c  t

Background:  An  increasing  number  of  neuroscientific  studies  gain  insights  by focusing  on  differences  in
functional  connectivity—between  groups,  individuals,  temporal  windows,  or task  conditions.  We  found
using  simulations  that  additional  insights  into  such  differences  can  be  gained  by  forgoing  variance  nor-
malization,  a procedure  used  by most  functional  connectivity  measures.  Simulations  indicated  that  these
functional  connectivity  measures  are sensitive  to  increases  in independent  fluctuations  (unshared  signal)
in  time  series,  consistently  reducing  functional  connectivity  estimates  (e.g.,  correlations)  even  though
such  changes  are  unrelated  to corresponding  fluctuations  (shared  signal)  between  those  time  series.
This  is  inconsistent  with  the  common  notion  of  functional  connectivity  as the  amount  of  inter-region
interaction.
New  method:  Simulations  revealed  that  a version  of  correlation  without  variance  normalization  –  covari-
ance  – was  able  to isolate  differences  in shared  signal,  increasing  interpretability  of  observed  functional
connectivity  change.  Simulations  also revealed  cases  problematic  for  non-normalized  methods,  leading
to a “covariance  conjunction”  method  combining  the  benefits  of  both  normalized  and  non-normalized
approaches.
Results:  We  found  that  covariance  and  covariance  conjunction  methods  can  detect  functional  connectivity
changes  across  a variety  of  tasks  and  rest  in both  clinical  and  non-clinical  functional  MRI  datasets.
Comparison  with  existing  method(s):  We  verified  using  a  variety  of tasks  and  rest  in  both  clinical  and  non-
clinical  functional  MRI datasets  that  it matters  in  practice  whether  correlation,  covariance,  or  covariance
conjunction  methods  are  used.
Conclusions:  These  results  demonstrate  the  practical  and  theoretical  utility  of  isolating  changes  in shared
signal,  improving  the ability  to  interpret  observed  functional  connectivity  change.

©  2015  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Extensive neuroscientific research has identified consistent pat-
terns of brain activity associated with a variety of behavioral
processes. In trying to understand the systems-level mechanisms
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underlying these activation patterns, researchers have increas-
ingly relied on functional connectivity—the statistical dependence
among brain activity time series. Functional connectivity has been
used across a wide variety of systems and a wide variety of
neuroscientific approaches, such as functional MRI  (fMRI), elec-
troencephalography (EEG), and multi-unit recording (Nolte et al.,
2004; Smith et al., 2011b; Buschman et al., 2012). Much of this
research has focused on identifying the basic systems-level archi-
tecture of the brain via the detection of functional connections
during resting state (Biswal et al., 2010; Brookes et al., 2011; Power
et al., 2011; Yeo et al., 2011; Craddock et al., 2013). In order to
link functional connectivity to cognition and behavior, however,
researchers are increasingly focusing on functional connectivity
differences. Such differences can be between groups (e.g., patients
versus healthy controls), individuals (e.g., correlating with IQ),
temporal windows (i.e., functional connectivity dynamics), or task
conditions. We  focus here on measuring and interpreting such func-
tional connectivity differences.

Despite the common statistical definition of functional connec-
tivity stated above, functional connectivity results are typically
interpreted in terms of neural interactions. This is likely due to
the distinction between what is of underlying theoretical interest
– true neural interactions – and methodological reality. Therefore,
we suggest that one can make progress here by reducing the gap
between methods and the phenomena of theoretical interest. In
other words, we suggest that any functional connectivity measure
that more closely reflects true neural interactions is a better func-
tional connectivity measure.

Here we developed a simulation framework to systematically
characterize relationships between functional connectivity meas-
ures and ground truth interactions. We  designed the framework (1)
to involve signals (neurons/regions) influencing one another, and
(2) to be as simple as possible to facilitate interpretation and to
make as few assumptions about the true nature of brain region
interactions as possible. Briefly, the framework involves simply
summing Gaussian random time series consisting of shared signal
(time series copied between source and target), unshared signal
(time series that are not copied between source and target), and
noise. The simulations allowed us to identify measures that bet-
ter reflect neural interactions, highlighting the appropriateness of
some functional connectivity measures over others when neural
interaction changes are of primary interest.

The most common statistical measures used to estimate
functional connectivity across a wide variety of neuroscientific
approaches are Pearson correlation and related methods (e.g.,
coherence, partial correlation). These and many other common
statistical measures utilize the concept of “percent variance
explained” – dividing an estimate of shared variance by overall
variance (i.e., variance normalization) – to produce standardized
estimates of association. While these measures are frequently use-
ful in other contexts, it was recently suggested that they are
inappropriate for estimating functional connectivity differences
(Friston, 2011)1. If true, this would have major implications for the
study of brain network function, as an increasing number of stud-
ies use Pearson correlation and related measures when studying
functional connectivity differences across groups, individuals, or
conditions (Zalesky et al., 2012a, 2012b).

As an illustration of a limitation of Pearson correlation, it has
been shown that increased noise in neuronal recordings decreases
correlations between neuronal time series, even when the

1 Friston emphasized the inadequacy of Pearson correlations in terms of estimat-
ing indirect influences, undirected influences, and their tendency for changing due
to  changes in noise. We focus here on the last criticism, and touch upon the other
criticisms in Section 4.

underlying neuronal interactions are unchanged (Behseta et al.,
2009). The sensitivity of correlations to unshared signal (rather than
noise per se) may  be especially problematic, however, as this would
reduce the interpretability of any detected functional connectivity
difference. For instance, a significant change in inter-region cor-
relation could be driven solely by increased neural processing by
only one of the two  tested brain regions. Thus, we  use the term
“unshared signal” to emphasize that these effects could be driven by
functionally important neural processes. The same conclusions also
apply to the more general concept of “unshared variance”, which
encompasses both signal and noise.

We  used simulations to ground our systematic exploration of
shared and unshared signal changes. These simulations revealed a
functional connectivity method (covariance) immune to system-
atic bias from unshared signal. However, simulations also revealed
that this method is sensitive to possible increases in overall vari-
ance/power that may  be unrelated to true brain interaction change.
We therefore developed a conjunctive method, in which a func-
tional connectivity change is only considered significant if it is
detected using both a variance normalized measure (e.g., corre-
lation) and covariance. We  then applied this method to empirical
data, determining that it not only provides increased interpretabil-
ity of results but also often provides results distinct from current
methods in practice. These findings validate a new theoretical
and methodological framework for characterizing functional con-
nectivity differences, improving interpretability of brain network
dynamics.

Due to the complex and potentially counterintuitive nature
of the results, we encourage readers to run the simple sim-
ulations themselves, available here: https://github.com/ColeLab/
simplesims/. Seeing and running the code may facilitate develop-
ment of an improved intuition for the nature of these functional
connectivity measures. Modifications of the code, including testing
of other functional connectivity measures and different conditions,
are encouraged as well.

2. Materials and methods

2.1. Functional connectivity estimation

Estimates of time series association were calculated using either
MATLAB (version R2012a) or R (version 2.15.1). Covariance was the
simplest measure we  used, and was calculated as
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where X and Y are brain activity time series, n is the number of time
points, and X̄ and Ȳ are the time series means.

Pearson correlation was  calculated as
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where S is the time series standard deviation. Most analyses
also involved the Fisher’s z-transform of the resulting Pearson
correlation, which increases the dynamic range of correlation
values beyond ±1.0. This is critical when investigating changes
in functional connectivity, as forgoing the Fisher’s z-transform
would result in artificial restrictions in dynamics. The Fisher’s
z-transform:

Fz = a tan h (r)
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