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h  i g  h  l  i  g  h  t  s

• Multi-sensor  extensions  of  conventional  single-sensor  feature  extraction  algorithms.
• Spatio-temporal  features  are  extracted  simultaneously  from  multi-sensor  AP  measurements.
• Spatial  information  is  extracted  without  a need  for  a forward  propagation  model.
• Temporal  information  is  extracted  without  predefined  AP  templates.
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a  b  s  t  r  a  c  t

Background:  Extracellular  recordings  of  multi-unit  neural  activity  have  become  indispensable  in  neuro-
science  research.  The  analysis  of  the  recordings  begins  with  the detection  of the action  potentials  (APs),
followed  by  a classification  step  where  each  AP  is associated  with  a given  neural  source.  A  feature  extrac-
tion  step  is  required  prior  to  classification  in  order  to reduce  the  dimensionality  of the data  and  the  impact
of noise,  allowing  source  clustering  algorithms  to work  more  efficiently.
New  method:  In  this  paper,  we  propose  a  novel  framework  for  multi-sensor  AP  feature  extraction  based
on the  so-called  Matched  Subspace  Detector  (MSD),  which  is shown  to  be  a natural  generalization  of
standard  single-sensor  algorithms.
Results:  Clustering  using  both  simulated  data  and  real AP  recordings  taken  in  the  locust  antennal  lobe
demonstrates  that  the  proposed  approach  yields  features  that are discriminatory  and  lead  to  promising
results.
Comparison  with  existing  method(s):  Unlike  existing  methods,  the  proposed  algorithm  finds  joint  spatio-
temporal  feature  vectors  that  match  the  dominant  subspace  observed  in  the  two-dimensional  data
without  needs  for a forward  propagation  model  and  AP templates.
Conclusions:  The  proposed  MSD  approach  provides  more  discriminatory  features  for  unsupervised  AP
sorting  applications.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Direct measurement of neuronal action potentials (APs) with
extracellular electrodes placed in the vicinity of active neurons
has become an indispensible tool in experimental neuroscience.
A typical goal in these experiments is to record the APs (spikes) of
individual neurons, often referred to as “single-unit activity.” Since
specific brain behaviors emerge from the interaction of individ-
ual neurons, identifying single-unit activity in large populations of
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neurons remains a high priority in experimental neuroscience
(Buzsáki, 2004). In addition to advancing understanding of brain
function, information from these recordings is increasingly impor-
tant in the emergent field of brain–machine interfaces (Carmena
et al., 2003), which may  potentially restore motor function in those
with severe paralysis. Despite their small size and high precision
of placement (Cham et al., 2005), signals at extracellular electrodes
often contain the superposition of the activity from several neurons.
In addition, these signals invariably contain various noise compo-
nents, such as electrode (thermal) noise, biological noise (activity
of distant neurons), and ionic channel noise (Benitez and Nenadic,
2008). The process of separating out the activity of individual neu-
rons from this so-called multi-unit activity measurements is often

http://dx.doi.org/10.1016/j.jneumeth.2015.07.003
0165-0270/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jneumeth.2015.07.003
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2015.07.003&domain=pdf
mailto:shunchi.wu@mx.nthu.edu.tw
dx.doi.org/10.1016/j.jneumeth.2015.07.003


S.-C. Wu  et al. / Journal of Neuroscience Methods 253 (2015) 262–271 263

Fig. 1. Automated procedures for AP sorting.

referred to as AP sorting or spike sorting (Fee et al., 1996; Abeles and
Goldstein, 1997; Lewicki, 1998; Gibson et al., 2012; Micera et al.,
2010).

Manual sorting of APs in large volumes of experimental data may
be prohibitively time-consuming, and so automated AP sorting pro-
cedures have become essential. An automated AP sorting algorithm
(see Fig. 1) typically entails three steps: (1) AP detection and align-
ment, i.e.,  determining the locations of APs in the electrode time
series and arranging the segmented AP waveforms so that they “line
up” in time, (2) feature extraction,  i.e.,  finding a low-dimensional
representation of detected APs, that facilitates AP discrimination
according to their neuronal sources, and (3) clustering,  i.e.,  group-
ing the extracted features into clusters associated with individual
neurons. The feature extraction step is crucial since it reduces the
effect of noise and removes redundant information in the input data
so that clustering algorithms can work efficiently. The three most
common feature categories discussed in the literature are: (1) AP
shape-related features (Lewicki, 1998; Yang et al., 2009), such as AP
height, width, peak-to-peak amplitude, inter-AP interval, and first-
order derivative, (2) wavelet coefficients (Yang and Shamma, 1988;
Letelier and Weber, 2000; Hulata et al., 2000, 2002; Quiroga et al.,
2004; Nenadic and Burdick, 2005), and (3) principal components
(PCs) (Gray et al., 1995; Lewicki, 1998; Csicsvari et al., 1998; Harris
et al., 2000). A common characteristic of the above features is that
they only capture temporal information since they are extracted
from single-sensor measurements. However, temporal features are
suboptimal for AP sorting since neurons of the same class located
at roughly equal distances to the electrode can generate similar AP
waveforms (Buzsáki, 2004), and therefore similar features.

To overcome this problem, multi-sensor extracellular probes
capable of recording time-aligned data from multiple spatial loca-
tions have been used (Harris et al., 2000; Takahashi et al., 2003;
Emondi et al., 2004; Chelaru and Jog, 2005). The simplest way
to extract features from multi-sensor measurements is to apply
standard feature extraction techniques to individual channels, and
then combine the extracted features into a single feature set. For
example, in Csicsvari et al. (1998) and Harris et al. (2000), the
first three PCs are calculated for each 4-sensor probe (tetrode)
channel, and a 12-dimensional feature vector is created by pro-
jecting the data in each channel onto each of the three PCs
later. Other approaches utilize spatial information in multi-channel

measurements to extract features for clustering. Examples include
estimating neuron locations (Chelaru and Jog, 2005; Szymanska
et al., 2013) or calculating independent components (Takahashi
et al., 2003, 2003; Brown et al., 2001). To localize a neuron
with multi-sensor measurements, a “forward model” describing
the propagation of APs through extracellular media is typically
adopted. Monopole transmission represents the simplest forward
model (Gray et al., 1995; Jog et al., 2002; Chelaru and Jog, 2005; Lee
et al., 2007), but it may  lack the flexibility needed to describe com-
plex field patterns seen experimentally. Consequently, this may
lead to a high variance in source localization and in turn to poor
clustering outcomes. Independent component analysis (ICA) sepa-
rates a multivariate signal into additive subcomponents. While
ICA has been useful in resolving temporally overlapping spikes,
it requires strong assumptions regarding the non-Gaussianity and
independence of the APs. In addition, a feature extraction step
is still required to identify the source of the recovered AP wave-
form. Finally, if propagation delays in the mixing medium cannot
be neglected, the performance of ICA will degrade unless a more
sophisticated time-delay model is employed (Takahashi et al.,
2002; Shiraishi et al., 2009).

In this paper, we  propose a novel framework for multi-sensor
AP feature extraction based on the so-called Matched Subspace
Detector (MSD) (Scharf and Friedlander, 1994; Kay, 1998; Parker
and Swindlehurst, 2003). The MSD  can be viewed as a multidimen-
sional generalization of the ubiquitous matched filter. It is used to
uncover an unknown low-dimensional subspace of data to which
the signal of interest is typically confined. It has been applied to
a variety of multivariate signals ranging from radar (Parker and
Swindlehurst, 2003) to functional magnetic resonance imaging (Liu
et al., 2001) data. Unlike multi-sensor PCA and algorithms based on
location estimates, which respectively allow only temporal or spa-
tial information to be extracted, our MSD  approach provides joint
spatio-temporal feature vectors that are more efficient for differen-
tiating APs of individual neurons. With a multi-sensor probe, each
AP is naturally recorded as a two-dimensional (space vs. time) data
matrix, and each AP signal has an intrinsic spatial structure or “spa-
tial signature” related to the location of the neurons relative to the
probe. This spatial information can used to differentiate between
the APs since the neurons where the APs originate are in different
locations relative to the probe. The MSD, on the other hand, not
only takes advantage of the spatial information, it also exploits the
same temporal information used by previous algorithms, and thus
is more discriminant. Extracting features directly from data matri-
ces to preserve the structural information has also been exploited in
the field of facial recognition (e.g., see Yang et al., 2004), although
the formulation and treatment of the problem are different from
the proposed MSD  approach. Furthermore, spatial information is
extracted by the MSD  method without the need for a forward prop-
agation model as required by location-based methods. While we
will focus on using the MSD  approach assuming each AP results in a
rank-one signal at the electrode array (i.e., point source models), the
technique can also be generalized for higher-rank signals, where
point source models are unable to provide an accurate descrip-
tion of the measured patterns. This is an advantage compared with
ICA-based methods, which have only been proposed under the
assumption of instantaneous point source mixtures. Higher-rank
signals, in practice, may  be due to the fact that at close range the AP
sources appear to be distributed rather than point sources, or they
may  be caused by dendritic current distortion (Somogyvári et al.,
2005; Shiraishi et al., 2009). Finally, the MSD  algorithm has no need
for AP templates, and thus is suitable for unsupervised AP sorting.

The remainder of the paper is outlined as follows. In the next
section, we present the data model and underlying assumptions.
Section 3 reviews several popular feature extraction techniques,
and the proposed MSD-based feature extraction algorithm is then
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