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• We  originally  implement  the  EM algorithm  under  data  augmentation  version  in DTI.
• We  propose  a  fast  computational  scheme  for  diffusion  tensor  estimation  under  the Rician  noise  model.
• The  proposed  EM  approach  is  superior  in terms  of computational  burden  and estimating  accuracy.
• Performance  is  shown  by  both  mathematical  interpretation  and  numerical  comparison.
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a  b  s  t  r  a  c  t

Diffusion  tensor  imaging  (DTI)  is widely  used  to characterize,  in  vivo,  the  white  matter  of  the  central  nerve
system  (CNS).  This  biological  tissue  contains  much  anatomic,  structural  and  orientational  information  of
fibers  in  human  brain.  Spectral  data  from  the displacement  distribution  of  water  molecules  located  in
the brain  tissue  are  collected  by a  magnetic  resonance  scanner  and  acquired  in the  Fourier  domain.
After  the  Fourier  inversion,  the noise  distribution  is  Gaussian  in  both  real  and imaginary  parts  and,  as  a
consequence,  the recorded  magnitude  data  are  corrupted  by  Rician  noise.

Statistical estimation  of  diffusion  leads  a non-linear  regression  problem.  In this  paper,  we  present  a  fast
computational  method  for maximum  likelihood  estimation  (MLE)  of  diffusivities  under  the  Rician  noise
model  based  on  the expectation  maximization  (EM)  algorithm.  By  using  data  augmentation,  we  are able
to transform  a  non-linear  regression  problem  into  the  generalized  linear  modeling  framework,  reducing
dramatically  the  computational  cost.  The  Fisher-scoring  method  is  used  for achieving  fast  convergence  of
the tensor  parameter.  The  new  method  is  implemented  and  applied  using  both  synthetic  and  real  data  in
a  wide  range  of b-amplitudes  up to 14,000  s/mm2. Higher  accuracy  and  precision  of the  Rician  estimates
are  achieved  compared  with  other  log-normal  based  methods.  In addition,  we  extend  the  maximum  like-
lihood  (ML)  framework  to the  maximum  a posteriori  (MAP)  estimation  in DTI under  the aforementioned
scheme  by  specifying  the  priors. We  will  describe  how  close  numerically  are  the  estimators  of model
parameters  obtained  through  MLE  and  MAP  estimation.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Diffusion tensor imaging (DTI) is a powerful tool to detect, in
vivo, the white matter anatomy and structures of the brain. The raw
MR-data are collected by a magnetic resonance scanner and con-
sist of spectral measurement from the displacement distribution
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of water molecules constrained into cellular structures. Diffusion
anisotropy characterizes the nervous fibers.

After the Fourier inversion, the MR-signals are corrupted by a
complex Gaussian noise, and consequently, the recorded measure-
ment magnitudes, referred as diffusion weighted magnetic reso-
nance imaging (DW-MRI) data, will follow the Rician distribution.
The complex noise is composed of two  components, where the real
and imaginary parts are still independently Gaussian (Henkelman,
1985; Koay et al., 2009; Zhu et al., 2007). The simplest method for
diffusion tensor estimation (DTE) is based on the linearized log-
normal regression model, where the residual variance is assumed
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to be either constant (the least squares) or depending on the
signal amplitude (the weighted least squares). These Gaussian
noise models fail to fit the high frequency data, which carry
information about the higher order diffusion characteristics. In
the existing literature (Rajan et al., 2011; Veraart et al., 2011;
Andersson, 2008) on the ML-estimation of diffusion tensors under
the Rician noise, the maximization algorithm involves repeated
computation of modified Bessel functions. By using data augmen-
tation we are able to replace the Rician likelihood by a Poisson
likelihood which is standard in the generalized linear modeling
(GLM) framework.

Such simplification reduces dramatically the computational
burden of the Fisher-scoring maximization algorithm. This applies
also at high b-amplitudes, where in the low signal regime mea-
surements below a threshold are customarily coded as zeros.
In the standard LS or WLS  approaches, zero-measurements are
problematic since they cannot be fitted by a log-normal distri-
bution, and simply discarding them induces selection bias. The
appropriately modeled noise level provides capability of data cor-
rection in further insights, e.g. removing artefacts from the raw
data.

This paper is structured as follows. Section 2 describes the noise
in MRI  and data augmentation, specifying the statistical model for
DTE. In Section 3 we discuss the implementation of the EM and
the Fisher-scoring algorithms in the DTI context. In addition, we
also specify priors for the parameters and discuss the computation
of the maximum a posteriori estimator (MAPE) under the same
scheme. Section 4 illustrates the results from both synthetic and
real data. Section 5 details the method comparisons. In Section 6
we conclude with an overview of the methods and the undergoing
developments. Theoretical details are left for the appendices.

2. GLM for MRI  observations

2.1. Rician noise in MRI

In magnetic resonance imaging (MRI), we usually need to take
the noise in the raw MR-acquisitions into account. The complex
valued noise ε is composed of two i.i.d. Gaussian random variables
with zero mean and variance �2, one for the real and the other
one for the imaginary component. After the Fourier inversion, the
signal intensity S ≥ 0 is corrupted by a complex Gaussian noise, and
Y = |S + ε| will be observed. Consequently, the observed MR-signal
magnitudes follow a Rician distribution resulting in the likelihood
function
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where I˛ is the ˛-order modified Bessel function of first kind. For
 ̨ = 0 it has also the following representation in terms of Gaussian

hypergeometric series (Jeffrey and Zwillinger, 2007):
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Let t = S2/(2�2), then Eq. (1) gives
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2.2. Data augmentation

We  follow the strategy presented in Gasbarra and Liu (2014)
implementing augmented data N from a Poisson distribution with

mean t > 0. The likelihood for the observed data can be transformed
from the Rician likelihood equation (3) to a joint augmented density

Pt,�2 (N = n, Y2 ∈ dy2) = Pt,�2 (N = n, X ∈ dx)

=  Pt(N = n)P�2 (X ∈ dx|N = n)
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where X is from the conditional distribution Gamma(N + 1, 1/(2�2))
given N. Eq. (4) provides a transformation from a non-linear regres-
sion problem to the GLM framework

f�,�(z) = c(z, �) exp
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)
(5)

with z corresponding to the response in general, see McCullagh and
Nelder (1989) for more details.

3. Method

3.1. DW-MRI and parametrization

In DW-MRI, the signal is modeled as the first equality

S(q) = S0 exp (−bd(g)) = S0 exp
(

Z�
)

, (6)

where the control vector q ∈ R
3 is determined by the sequence

of gradient pulses, b = |q|2, and g = q/|q| ∈ S2 is a vector of unit
length. The MR-signal decays exponentially with respect to the
b-amplitude. Depending on the gradient direction g the decay is
modeled by the reflection symmetric diffusivity function d : S2 →
R

+.
Great efforts have been devoted to modeling the diffusivity, and

in general we  can have parametrization as the second equality
in Eq. (6). In the simplest model the diffusivity is expressed by a
symmetric and positive definite rank-2 tensor D ∈ R

3×3, giving

log S(q) = log S0 − bg�Dg = log S0 + Z�,

where in the left hand side the diffusion tensor is parametrized as
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with a design matrix
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In high angular resolution models (HARDI) (see, e.g. Barmpoutis
et al., 2009), the diffusivity is modeled with a totally symmetric
Cartesian tensor D of order n ∈ N, as
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3.2. EM in MLE

In the optimization of the likelihood, we employ the EM
(expectation-maximization) algorithm, which is one among the
iterative methods in the MLE  or in the maximum a posteriori
estimation (MAPE). The EM algorithm proceeds in two  steps and
shortens the computational complexity by using augmented data.
In terms of our case, in the E-step we  calculate the expectation of
the log-likelihood w.r.t. the conditional distribution of N given by
the observations and other parameters with fixed values. In the
M-step, we  find the ML  parameter of S2

0 and �2 by maximizing the
augmented log-likelihood quantities. The computational details are
listed in Appendix A.
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