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• We  visualize  source-based  connec-
tivity online  based  on  multi-channel
EEG  recordings.

• This  reveals  dynamically  changing
causal interactions  between  cortical
sources.

• We  validate  the  feasibility  of our
approach  with  12  participants.

• Our  approach  is  based  on Python  and
uses functionality  from  SCoT.
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a  b  s  t  r  a  c  t

Background:  While  visualization  of brain  activity  has  well  established  practical  applications  such  as  real-
time  functional  mapping  or  neurofeedback,  visual  representation  of  brain  connectivity  is  not  widely
used.  In addition,  technically  challenging  single-trial  connectivity  estimation  may  have  hindered  practical
usage  of connectivity  in online  applications.
New  method:  In  this  work,  we developed  algorithms  that  are capable  of  estimating  and  visualizing  (effec-
tive)  connectivity  between  independent  cortical  sources  during  online  EEG  recordings.
Results:  The  core  routines  of  our procedure,  such  as  CSPVARICA  source  extraction  and  regularized  con-
nectivity  estimation,  are  available  in our  open  source  Python-based  toolbox  SCoT.  We  demonstrate  for
the  first  time  that online  connectivity  visualization  is feasible.  We  show  this  in a feasibility  study  with
twelve  participants  performing  two different  tasks,  namely  motor  execution  and  resting  with  eyes  open
or closed.  Connectivity  patterns  were  significantly  different  between  two motor  tasks  in  four  participants,
whereas  significant  differences  between  resting  task  patterns  were  found  in seven  participants.
Comparison  with  existing  methods:  Existing  connectivity  studies  have  focused  on  offline  methods.  In con-
trast,  there  are  only  a small  number  of examples  in the  literature  that  explored  online  connectivity
estimation.  For  example,  a system  based  on wearable  EEG  has  been  demonstrated  to  work  for  one  subject,
and the  Glass  Brain  project  has  received  considerable  attention  in  popular  sciences  last  year.  However,
none  of  these  attempts  validate  their  methods  on multiple  subjects.
Conclusions:  Our  results  show  that causal  connectivity  patterns  can  be observed  online  during  EEG  mea-
surements,  which  is  a first  step  towards  real-time  connectivity  analysis.
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1. Introduction

The human brain consists of a vast network of interconnected
neuronal and glial cells. Each of the 20 billion neurons connects
to about 7000 other neurons via chemical synapses (Drachman,
2005). Only by forming dynamic networks, groups of relatively sim-
ple neurons can perform complex tasks such as learning, moving a
body, or writing a scientific paper. Hence, these connections are an
important characteristic of the brain.

With steadily increasing computational power and improve-
ments in neuroimaging techniques, scientists are now able to
study brain connectivity at different temporal and spatial scales.
While structural connectivity is only concerned with anatomical
correlates, functional connectivity is related to correlated activ-
ity of neural networks. Inspecting functional connectivity in detail
can reveal causal relations between correlated brain areas. This
concept of directed connectivity is known as effective connec-
tivity (Friston, 2011). Examples for connectivity research include
anatomical tracing of white matter fibers (Wakana et al., 2004),
measuring functionally coupled brain activity (Friston et al., 1993;
Friston, 2011), and determining effective information flow among
brain structures (Korzeniewska et al., 2003; Brookes et al., 2012).

Functional and effective connectivity can be estimated from
various measures of brain activity such as functional magnetic
resonance imaging (fMRI) (Smith, 2012), electroencephalography
(EEG) (Michel and Murray, 2012), magnetoencephalography (MEG)
(Brookes et al., 2012), functional near infrared spectroscopy (fNIRS),
or positron emission tomography (PET) (Friston et al., 1993) in
different temporal and spatial resolutions. In our work, we focus
on EEG, because it is an inexpensive and portable technique that
directly captures neural activity on a millisecond scale.

However, estimation of connectivity from the EEG faces two
major challenges: (1) EEG channels are highly correlated due to
volume conduction and a common reference, and (2) EEG sensor
locations are not the actual sources of cortical brain activity. These
challenges can be solved by measuring connectivity in the cortical
source space rather than in the sensor space (Michel and Murray,
2012).

Routines for connectivity analysis are included in many popular
EEG analysis tools such as EEGLAB and SIFT (Delorme et al., 2011),
MNE-Python (Gramfort et al., 2013), and Fieldtrip (Oostenveld
et al., 2011). However, most of these tools are designed for offline
analysis. This means that they utilize multiple repetitions of the
experimental conditions to increase time and frequency resolu-
tion of the connectivity estimates. In contrast, using connectivity
in online applications such as brain-computer interfaces (BCIs) or
real-time brain connectivity visualization requires more advanced
estimation strategies.

Recently, we developed a framework for single-trial connectiv-
ity estimation (Billinger et al., 2013), where EEG channel data are
transformed into the source space with independent component
analysis (ICA) (Makeig et al., 1996) prior to connectivity estimation.
We found that connectivity measures such as the direct directed
transfer function (dDTF) were useful for classification of motor
imagery tasks.

In this work, we go one step further and demonstrate online
estimation of single-trial connectivity. We  focus on connectiv-
ity visualization instead of implementing a BCI application. We
extended the available tools to enable online validation of our
single-trial connectivity estimation concept, which relies on dis-
tribution of modular computation units over processors and
computers. This allows the system to process EEG signals fast
enough for online application. Furthermore, we  present a visualiza-
tion strategy that engages multiple visual aspects (color, intensity,
motion, and location) to concisely represent time-evolving connec-
tivity patterns.

Since visualizing source-based connectivity in real-time is a
novel approach, only few potential applications come to mind. For
example, seizure prediction in epilepsy is a promising candidate
since it has already been demonstrated that connectivity meas-
ures contain essential information to predict epileptic seizures
(see van Mierlo et al. (2014) for a review). Specifically, previ-
ous studies have focused on offline detection of epileptic activity,
but future applications could be based upon our methodology
to process EEG connectivity online. This would allow the sys-
tem to take suitable measures to prevent an epileptic seizure
from fully developing – something that is only possible with an
online approach. Other possible future applications include BCIs.
We have already shown that connectivity features work in the
context of BCIs (Billinger et al., 2013), and future work could
focus on improving performance of connectivity-based features.
More hypothetical applications include sleep stage analysis and
biofeedback. The latter would directly benefit from our approach
here, because it requires visualization of brain activity, which
we provide in the form of source-based connectivity visualiza-
tion.

2. Methods

2.1. Connectivity estimation

A common practice in connectivity estimation is to model the
signals with a vector autoregressive VAR model. Such a model
describes causal interactions in the time domain. Various spectral
connectivity measures can be extracted from frequency domain
representations of the model (Schlögl and Supp, 2006). In this
manuscript, we  will refer to the two steps of VAR model fitting and
subsequent extraction of connectivity measures simply as connec-
tivity estimation.

When performing multi-trial connectivity estimation, a large
amount of data is available from many repetitions of the experi-
ment. In a typical experiment with 64 EEG channels, 100 trials, and
an estimation window length of 100 samples, a total of 640,000
data points are available for estimation. Thus, reliable estimates
including statistical measures such as the mean and its confidence
interval can be obtained in offline analyses. Fig. 1 shows an exam-
ple of multi-trial partial directed coherence (PDC) (Baccalá and
Sameshima, 2001) estimation.

In contrast, only a fraction of data is available in the single-
trial case – typically only one short time window. This would
amount to only 6400 data points in the previous example. In
general, this is not sufficient for meaningful interpretation of con-
nectivity estimates and leads to large inter-trial variance. However,
this variance can be reduced by imposing constraints on the VAR
model. In particular, regularization of the VAR model leads to more
consistent single-trial estimates compared to unconstrained VAR
models. We  use ridge regression to regularize our VAR models,
which imposes a penalty on the l2-norm of the model coeffi-
cients. This in turn leads to smaller model coefficients and limits
the influence of noise (Billinger et al., 2014). Fig. 2 illustrates
the impact of regularization on single-trial connectivity estima-
tion.

In this work, we extend our single-trial connectivity frame-
work (Billinger et al., 2013, 2014) to support online visualization
of connectivity. This framework is based on a two-step approach.
In the first step, offline analysis is performed to initialize
the single-trial analysis in the second step. In the initial-
ization step, we decompose EEG channels into independent
components. By manually selecting ICs that represent corti-
cal sources, we  derive an unmixing matrix that we  can later
use to extract signals from the same sources, but using new
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