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a  b  s  t  r  a  c  t

Background:  Electroencephalographic  data  are  easily  contaminated  by  signals  of  non-neural  origin.  Inde-
pendent  component  analysis  (ICA)  can help  correct  EEG  data  for such  artifacts.  Artifact  independent
components  (ICs)  can  be identified  by experts  via  visual  inspection.  But  artifact  features  are  sometimes
ambiguous  or  difficult  to  notice,  and  even  experts  may  disagree  about  how  to categorise  a  particular  com-
ponent. It  is therefore  important  to inform  users  on  artifact  properties,  and  give them  the  opportunity  to
intervene.
New Method:  Here  we  first  describe  artifacts  captured  by  ICA.  We  review  current  methods  to  automatically
select  artifactual  components  for  rejection,  and introduce  the SASICA  software,  implementing  several
novel  selection  algorithms  as  well  as  two previously  described  automated  methods  (ADJUST,  Mognon
et  al.  Psychophysiology  2011;48(2):229;  and  FASTER,  Nolan  et al. J Neurosci  Methods  2010;48(1):152).
Results:  We  evaluate  these  algorithms  by comparing  selections  suggested  by SASICA  and  other  methods
to  manual  rejections  by experts.  The  results  show  that  these  methods  can  inform  observers  to  improve
rejections.  However,  no  automated  method  can  accurately  isolate  artifacts  without  supervision.  The  com-
prehensive  and interactive  plots  produced  by  SASICA  therefore  constitute  a helpful  guide  for  human  users
for making  final  decisions.
Conclusions: Rejecting  ICs  before  EEG  data  analysis  unavoidably  requires  some  level of  supervision.  SASICA
offers observers  detailed  information  to guide  selection  of  artifact  ICs.  Because  it  uses  quantitative  param-
eters and thresholds,  it improves  objectivity  and reproducibility  in reporting  pre-processing  procedures.
SASICA  is also  a didactic  tool  that allows  users  to quickly  understand  what  signal  features  captured  by
ICs  make  them  likely  to  reflect  artifacts.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The electroencephalogram (EEG) recorded from electrodes
placed on the scalp can provide information about underlying brain
activity, but attempts to interpret the recorded signal are invari-
ably hindered by the presence of artifacts, i.e. electrical signals of
non-neural origin.

One major issue in interpreting scalp EEG is that the signal
recorded at each electrode reflects a mixture of several sources of
activity of various origin within and outside of the brain. A widely
used method that allows one to isolate and subtract independent
sources of activity is independent component analysis (ICA). This
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method has been introduced to EEG analysis by Makeig et al. (1996),
and popularized in the EEGLAB (Delorme and Makeig, 2004), a
widely used software package running under MATLAB (The Math-
works). ICA allows isolation of statistically independent sources,
called independent components (ICs) as linear combinations of
electrodes. Each IC is characterized by a topography (set of inverse
weights, describing the projection of the independent source onto
the electrode cap), and a time course, which can be thought of as
the signal that would have been recorded with an electrode located
directly at that source. Because ICs are linear combinations of the
original electrode signal, they can be treated in many respects like
single electrodes. In particular, they can be subtracted easily from
the signal just like one would discard a bad electrode after recor-
ding. After removal of a bad electrode, the signal is free of the
artifacts that occurred at that electrode. Likewise, after subtraction
of an artifactual IC, the remaining signal is free from artifacts that
were captured entirely by that IC.
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This method of component subtraction is widely used to remove
artifacts such as eye blinks or muscle activity from EEG recordings
(e.g. Delorme et al., 2007; Jung et al., 2000a,b; Mantini et al., 2007;
McMenamin et al., 2010; Urrestarazu et al., 2004). Some ICs cap-
ture a large amount of non-brain sources that recur in the signal,
such as eye and muscle movements, heart beats, high impedance
electrodes, or line noise (Jung et al., 2000a). However, although
visualisations of IC activations and the effect of their subtraction
make a compelling case for the usefulness of this approach in sepa-
rating artifacts from neural signal, it is usually left to the user to
scrutinise the ICA output and judge which ICs capture artifacts.
Although selecting artifact ICs should be based on objective criteria,
a comprehensive review of the signal features present in classical
artifact types is to our knowledge missing in the literature. We  will
here define and illustrate precisely the features of the most com-
mon  artifact types, and explain how these features are reflected in
various statistical measures that can be computed on ICs, in order
to provide investigators with a proper means of deciding which ICs
capture artifacts and which ones do not.

The features of artifactual ICs can be visualized using various
representations. EEGLAB offers a number of handy visual represen-
tations of IC properties that allow a trained observer to accurately
identify artifactual ICs, but some features are not immediately obvi-
ous from these representations and time-consuming scrutiny and
extensive experience is required. A number of automated proce-
dures exist (e.g. Campos Viola et al., 2009; Delorme et al., 2007;
Mognon et al., 2011; Nolan et al., 2010; Winkler et al., 2011) that
compute objective statistical measures from ICs, and use these
measures to automatically decide whether a component is artifac-
tual or not. However, because of the high variability in EEG signals,
these methods are inevitably prone to type I and type II errors.
Furthermore, although some artifacts are unequivocally considered
a nuisance (e.g. badly connected electrode noise), and have to be
removed from the signal before analysis, others may  be more con-
troversial (e.g. Olbrich et al., 2011), and not every experimenter
may  want to discard them. We  thus promote here an intermediate
method, using the objective measures computed by several meth-
ods and enhanced EEGLAB visual representations to allow users to
decide whether or not individual ICs reflect artifacts and need to be
removed from the data or not.

In this paper, we first describe the relevant signal features
related to the most common EEG artifacts – ocular artifacts, tonic
muscle artifacts, loose electrode connections (high impedance),
and exceptional high amplitude events – and show how these
features can be mapped onto a number of visually recognizable
attributes in visual representations of the signal and on objective
statistical features of the signal. Some of these measures have been
introduced before in plugins for EEGLAB (ADJUST Mognon et al.,
2011; and FASTER Nolan et al., 2010). Second, we  introduce the
SASICA plugin (Semi-Automated Selection of Independent Com-
ponents of the electroencephalogram for Artifact correction) for
EEGLAB that provides a convenient visualization of all of these
measures and allows refining selections manually if needed (Fig. 1).
We thereby provide the user with all required information for
understanding the reasons why a given component might be
removed from the data. Finally, we evaluate all methods against
expert classifications for a total of 21 experimental datasets, and
illustrate the impact of (in)appropriately identifying and removing
artifactual components on signal quality.

2. Methods

2.1. Signals captured by ICA

Several categories of signals are readily isolated by single ICs.
Specifically, ICs can capture (1) a source of neural activity, (2)

variations of potential due to blinks, (3) eye movements (saccades),
(4) muscle contraction, or (5) line noise or a misconnected (high
impedance) electrode, commonly referred to as a “bad channel”.

Importantly, ICA may  also fail to separate signals, and many
components (often a majority) do not fit a single category. In
essence, separating distinct classes of ICs is thus a signal detection
problem in which the experimenter needs to avoid two mistakes:
missing to-be-detected artifact ICs (type II error) and falsely repor-
ting other non-artifactual ICs (type I error). In the context of artifact
correction, the former mistake would imply under-correction while
the latter would imply over-correction. Another challenge is to
solve this task using objective criteria that can be readily commu-
nicated, for example in publications.

All automated methods reviewed here have their own heuristic
to identify at least some of these ICs. In the following, we describe all
the features of each category of IC, as well as a number of statistical
measures designed to reveal these features. We include measures
computed by SASICA, CORRMAP (Campos Viola et al., 2009), ADJUST
(Mognon et al., 2011), and FASTER (Nolan et al., 2010). We  present
a summary of all measures offered by these methods in Table 1. We
refer the interested reader to the original papers for details on each
method.

2.1.1. Neural activity
The success of ICA in EEG analysis is largely due to the plausibil-

ity of the solution returned by ICA. Indeed, in most cases, when
performed on a full-rank long enough dataset, the topography
and time course of at least a handful of components compellingly
allow identifying them as capturing selective neural activity. These
components are often dipolar, i.e. they are well modeled by one,
or sometimes two, dipolar sources (Delorme et al., 2012), and
their topography is regular and smooth. Moreover, they often
rank amongst the strongest components in the dataset (i.e. those
explaining most variance in the signal, and sorted first in EEGLAB),
they often contain a peak at physiological frequencies (e.g. alpha,
beta, delta or theta), and may  show a strong evoked response to
sensory stimuli. These properties are listed in Fig. 2A for reference.

The dipolar nature of the components can be measured by first
fitting a dipolar source to the component (as implemented in the
DIPFIT toolbox distributed with EEGLAB; applied to all components
of all datasets tested in this article), and then measuring the resid-
ual variance after removing the fitted data. Residual variance is
often very low for accurately modeled components (see results,
Fig. 2B-D). Therefore, this measure is used routinely within EEGLAB
to select neural components for analyses conducted on component
time courses. However, it should be noted that some components
with low residual variance may  be artifactual. For instance blink or
saccade components can be very well modeled by dipoles placed
in the eyes of the subjects (see Fig. 3A, 5% residual variance of a
dipole fit, see Section 2.2.2.5 on residual variance for explanation).
Some pure tonic muscle components may  also be well modeled by
a dipole placed close to the scalp, where muscular activity arises
(e.g. Fig. 4B, 9% residual variance). Furthermore, several spatially
separated sources of neural activity working in synchrony will not
be well modeled by a dipole (e.g. Fig. 2E, 31% residual).

It is often the case that components neatly isolating neural activ-
ity rank amongst the first twenty components in a dataset. This
feature is an empirical observation that has to our knowledge not
been measured so far. In the 8 training datasets used in this arti-
cle, 50% of the components rated as neural by the experts ranked
amongst the 13% largest components. Nevertheless, artifacts can
also be of strong amplitude (e.g. blinks), so this feature may not
be discriminant for deciding whether a component is neural or
artifactual.

ICs capturing neural activity often contain a peak in the Alpha
(8–12 Hz, Fig. 2B), Beta (15–30 Hz, Fig. 2C), delta (1–4 Hz), or Theta
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