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h  i g  h  l  i g  h  t  s

• ICA  of  the  full  complex-valued  fMRI  data is enabled.
• The  SM  phases  are utilized  to identify  and  suppress  the  unwanted  voxels.
• Our  TC-based  phase  de-ambiguity  is more  accurate  and  robust than  the  SM-based  method.
• The  phase  range  of  BOLD-related  voxels  is  defined  by  maximizing  TC  real-part  power.
• Our  method  can  detect  much  more  contiguous  activations  than  magnitude-only  ICA.
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a  b  s  t  r  a  c  t

Background:  ICA  of  complex-valued  fMRI data  is  challenging  because  of  the  ambiguous  and  noisy  nature
of  the  phase.  A typical  solution  is to  remove  noisy  regions  from  fMRI  data  prior  to  ICA. However,  it  may
be  more  optimal  to  carry out  ICA  of full  complex-valued  fMRI  data,  since  any  filtering  or  voxel-based
processing  may  disrupt  information  that  can  be useful  to ICA.
New  method:  We  enable  ICA  of  the full  complex-valued  fMRI  data  by utilizing  phase  information  of  esti-
mated  spatial  maps  (SMs).  The  SM  phases  are  first adjusted  to properly  represent  spatial  phase  changes  of
all  voxels  based  on  estimated  time  courses  (TCs),  and  then  these  are  used  to segment  the voxels  into  BOLD-
related  and  unwanted  voxels  based  on a criterion  of TC  real-part  power  maximization.  Single-subject  and
group  phase  masks  are  finally  constructed  to remove  the unwanted  voxels  from  the individual  and  group
SM  estimates.
Results:  Our  method  efficiently  estimated  not  only  the  task-related  component  but  also  the  non-task-
related  component  DMN.
Comparison  with  existing  method(s):  Our method  extracted  139–331%  more  contiguous  and  reasonable
activations  than  magnitude-only  infomax  for the task-related  component  and  DMN  at  |Z|  >  2.5,  and
detected  more  BOLD-related  voxels,  but eliminated  more  unwanted  voxels  than  ICA  of  complex-valued
fMRI  data  with  pre-ICA  de-noising.  Our  TC-based  phase  de-ambiguity  exhibited  higher  accuracy  and
robustness  than  the  SM-based  method.
Conclusions:  The  TC-based  phase  de-ambiguity  is  essential  to prepare  the SM  phases.  The  SM  phases
provide  a  new  post-ICA  index  for reliably  identifying  and  suppressing  the  unwanted  voxels.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Corresponding author. Tel.: +86 411 84706697; fax: +86 411 84706697.
E-mail address: qhlin@dlut.edu.cn (Q.-H. Lin).

http://dx.doi.org/10.1016/j.jneumeth.2015.03.036
0165-0270/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

dx.doi.org/10.1016/j.jneumeth.2015.03.036
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2015.03.036&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:qhlin@dlut.edu.cn
dx.doi.org/10.1016/j.jneumeth.2015.03.036
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


76 M.-C. Yu et al. / Journal of Neuroscience Methods 249 (2015) 75–91

1. Introduction

Independent component analysis (ICA) has been widely used
to extract spatial maps (SMs) and time courses (TCs) from func-
tional magnetic resonance imaging (fMRI) data (McKeown et al.,
1998; Calhoun and Adali, 2006a, 2012; Vigario and Oja, 2008).
The vast majority of ICA focused only on the magnitude data of
fMRI (i.e., magnitude-only analysis), though fMRI data are initially
acquired as complex-valued image pairs. The primary cause is
that the phase data of fMRI are ambiguous and noisy. However,
a number of previous studies have shown that the phase data con-
tain useful and unique information for better understanding brain
function, including blood oxygenation during functional activation
(Hoogenraad et al., 1998; Arja et al., 2010), the effect of macro
and micro vessels (Menon, 2002; Tomasi and Caparelli, 2007),
the orientation of large blood vessels (Klassen and Menon, 2005),
and identification of different tissue types (Rauscher et al., 2005).
As such, the complex-valued fMRI data are gradually explored
via flexible data-driven approaches, such as ICA (Calhoun et al.,
2002; Rodriguez et al., 2009, 2010, 2011, 2012; Li et al., 2011) or
model-based approaches (Lai and Glover, 1997; Nan and Nowak,
1999; Rowe, 2005; Rowe and Logan, 2004, 2005). In this study, we
focused on the ICA approach and blood oxygenation-level depend-
ent (BOLD) fMRI data (Ogawa et al., 1990; Bandettini et al., 1992;
Bhavsar et al., 2014).

Calhoun et al. (2002) presented the first application of ICA
of complex-valued fMRI data, which demonstrated an increased
ability to isolate task-related functional changes, and an average
of 12–23% more contiguous activated voxels were detected than
magnitude-only ICA at a threshold of Z-score > 2.5. Note that the
analysis was restricted to a portion (the posterior half) of the brain
due to the noisy nature of whole-brain data. The efforts of follow-up
research were mainly directed toward development of complex-
valued ICA algorithms for estimating the TC and SM components
efficiently (Adali et al., 2004; Calhoun et al., 2004; Calhoun and
Adali, 2006b; Adali and Calhoun, 2007; Novey and Adali, 2008;
Adali et al., 2008; Li and Adali, 2008; Chen and Lin, 2008) and
order selection for complex-valued fMRI data (Wang et al., 2008).
Recently, a quality map  phase de-noising (QMPD) method enabling
whole-brain analysis was proposed (Rodriguez et al., 2009, 2010,
2011, 2012). In this method, the noisy regions in the complex-
valued fMRI data were first identified by exploiting the observed
phase image and then eliminated before performing individual and
group studies using newly developed complex-valued ICA algo-
rithms such as the entropy bound minimization (EBM) algorithm
(Li and Adali, 2010; Li et al., 2011). As a result, better sensitiv-
ity and specificity than magnitude-only methods were achieved
when identifying voxels in an estimated task-related independent
component (IC) (Rodriguez et al., 2011, 2012; Li et al., 2011).

Instead of removing some specific voxels in the brain prior
to doing ICA, it may  be more optimal to perform ICA on the
full complex-valued fMRI data, as any filtering or voxel-based
processing may  disrupt information useful to ICA. However, the
biggest challenge is that, since we do not perform pre-ICA de-
noising of the data, there will be a large number of unwanted voxels
with high amplitudes in the SM estimates. As such, we  sought to
utilize the phase information to perform post-ICA identification and
suppression of the unwanted voxels. This is indeed supported by
previous studies using phase information of the observed voxels
to identify and suppress unwanted macrovascular contributions
(Menon, 2002; Klassen and Menon, 2005; Tomasi and Caparelli,
2007; Nencka and Rowe, 2007).

Our method for utilizing the SM phase consists of three
parts: phase de-ambiguity, phase positioning, and phase mask-
ing. Because the SM phase initially suffers from the inherent phase
ambiguity of complex-valued ICA, we first presented an accurate

and robust TC-based phase de-ambiguity method to adjust the SM
phase for correctly representing the spatial phase changes of all
voxels under severe noise conditions. We  then introduced the con-
cept of phase positioning to segment the voxels of the SM estimates
into BOLD-related versus unwanted voxels, and we  defined the
phase range of the BOLD-related voxels based on maximization of
TC real-part power. Next, we  constructed single-subject and group
phase masks and provided phase masking algorithms to remove
the unwanted voxels from the SM estimates. Finally, we  tested the
efficacy of our method in individual and group fMRI studies.

2. Methods

2.1. Actual fMRI data

The fMRI dataset used in this study was  the same as that used
in Rodriguez et al. (2012) and Li et al. (2011). The data were
obtained from 16 subjects performing a finger-tapping motor task
while receiving auditory instructions. The paradigm had a block
design with alternating periods of 30 s on (finger tapping) and
30 s off (rest). The experiments were performed on a 3T Siemens
TIM Trio system with a 12-channel radio frequency (RF) coil.
The fMRI experiment used a standard Siemens gradient-echo EPI
sequence modified to store real and imaginary data separately.
The following parameters were used: field-of-view = 24 cm,  slice
thickness = 3.5 mm,  slice gap = 1 mm,  number of slices = 32, matrix
size = 64 × 64, TE = 29 ms,  TR = 2 s, flip angle = 70 degrees. Prepro-
cessing of the data was  performed using the SPM software package.
Magnitude data were coregistered to compensate for movements in
the fMRI time series images. Images were then spatially normalized
into the standard Montreal Neurological Institute space. Following
spatial normalization, the data (real and imaginary images) were
slightly sub-sampled, resulting in 53 × 63 × 46 voxel. Motion cor-
rection and spatial normalization parameters were computed from
the magnitude data and then applied to the phase data. Then, the
real and imaginary images were both spatially smoothed with a
10 × 10 × 10 mm3 full width at half-maximum Gaussian kernel.

We were interested in the task-related component and the
default mode network (DMN), and we utilized their magnitude-
only SM priors to assess the quality of the SM estimates. Considering
that GLM (Friston et al., 1995) is a widely used model-based method
(directly using the paradigm of the fMRI data), the task-related
magnitude mask (named GLM mask), Fig. 11(e), was  calculated by
performing a one sample t-test on the single-subject GLM results
(p < 0.05). For the DMN  magnitude mask, we  utilized the DMN  com-
ponent from Smith et al. (2009) showing close correspondence
between the independent analyses of resting and activation brain
dynamics, as seen in Fig. 12(e).

2.2. Phase de-ambiguity based on TC estimates

Assuming there are N observed signals X = [x1, . . ., xN]T ∈
CN×L , which are the linear instantaneous mixtures of N unknown
complex-valued source signals S = [s1, . . .,  sN]T ∈ CN×L via an
unknown mixing matrix A = [a1, . . ., aN] ∈ CN×N , the mixing model
of complex-valued ICA is X = AS.  By finding an unmixing matrix
W ∈ CN×N , complex-valued ICA estimates the source signals as Ŝ =
WX  = WAS  = PDS and the mixing matrix as Â = W−1 = A(PD)−1,
where P ∈ RN×N is a real permutation matrix that causes per-
mutation ambiguity, D = diag(d1e−j�1 , . . .,  dNe−j�N ) ∈ CN×N is a
complex-valued diagonal scaling matrix that causes scaling ambi-
guity, and d1, . . .,  dN and �1, . . .,  �N are indeterminate scales and
angles. Ignoring the permutation ambiguity (Rodriguez et al., 2012),
we have:

X = ÂŜ = (AD−1)(DS) (1)
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