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h  i g  h  l  i  g  h  t  s

• We  developed  four  new  PCA  meth-
ods to identify  nuisance  regressors  in
fMRI  analysis.

• We  compared  these  PCA  methods
with  CompCor,  an  established  PCA
method.

• The  best  improvement  in  CNR  and
sensitivity  resulted  from  the whole
brain component  correction  (WCom-
pCor) method.

• However,  regressing  noise  signals
showed a paradoxical  consequence
of reducing  specificity  for  all  noise
reduction  methods  attempted.
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a  b  s  t  r  a  c  t

Background:  Functional  magnetic  resonance  imaging  (fMRI)  time  series  are  subject  to  corruption  by  many
noise sources,  especially  physiological  noise  and motion.  Researchers  have  developed  many  methods  to
reduce physiological  noise,  including  RETROICOR,  which  retroactively  removes  cardiac  and  respiratory
waveforms  collected  during  the  scan,  and  CompCor,  which  applies  principal  components  analysis  (PCA)
to  remove  physiological  noise  components  without  any  physiological  monitoring  during  the  scan.
New  method:  We  developed  four  variants  of  the CompCor  method.  The  optimized  CompCor  method
applies  PCA  to time  series  in  a noise  mask,  but  orthogonalizes  each  component  to the  BOLD  response
waveform  and  uses  an  algorithm  to  determine  a favorable  number  of components  to  use  as “nuisance
regressors.”  Whole  brain  component  correction  (WCompCor)  is  similar,  except  that  it applies  PCA to
time-series  throughout  the whole  brain.  Low-pass  component  correction  (LCompCor)  identifies  low-pass
filtered  components  throughout  the  brain, while  high-pass  component  correction  (HCompCor)  identifies
high-pass  filtered  components.
Comparison  with  existing  method:  We  compared  the  new  methods  with  the  original  CompCor  method  by
examining  the  resulting  functional  contrast-to-noise  ratio  (CNR),  sensitivity,  and  specificity.
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Results:  (1)  The  optimized  CompCor  method  increased  the  CNR  and  sensitivity  compared  to  the original
CompCor  method  and  (2)  the  application  of  WCompCor  yielded  the  best  improvement  in the  CNR  and
sensitivity.
Conclusions:  The  sensitivity  of  the  optimized  CompCor,  WCompCor,  and  LCompCor  methods  exceeded  that
of  the  original  CompCor  method.  However,  regressing  noise  signals  showed  a  paradoxical  consequence
of  reducing  specificity  for  all noise  reduction  methods  attempted.

Published  by  Elsevier  B.V.

1. Introduction

Blood oxygenation-level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is plagued by raw intrinsic noise, subject
motion, and physiological noise. The presence of noise reduces the
sensitivity of BOLD fMRI studies and reduces the efficacy of fMRI as
a biomarker. If BOLD fMRI were to be used as an endpoint in device
trials or for diagnostics, it is essential to understand the value of
computational methods for noise reduction upon the sensitivity
and specificity of the BOLD signal.

Raw noise, which is independent of the MR  signal (Edelstein
et al., 1986), is composed of both thermal noise and system noise.
Thermal noise derives from the random motion of electrons in the
radiofrequency (RF) coil and the tissue being imaged (Haacke et al.,
1999). A rise in temperature increases the motion of electrons,
increasing thermal noise. Imperfection of the hardware leads to
system noise, including low frequency drift (Smith et al., 1999),
static field inhomogeneities due to imperfect shimming, nonlin-
earities in the gradient fields, and irregularities in the performance
of the RF coil (Huettel et al., 2004).

Subject motion constitutes a major source of noise in fMRI
(Friston et al., 1996). Even head motion of a few millimeters
increases the variability of voxel signal intensity as the relative
proportion of different tissue types changes inside each voxel.
Rigid-body registration methods have been developed to correct for
intrascan motion (Cox and Jesmanowicz, 1999). Stimulus- and task-
correlated motion can increase the presence of false positives or
false negatives in fMRI activation maps (Yetkin et al., 1996). To over-
come correlated motion effects, one can use event-related designs
(Birn et al., 1999), optimized block durations (Birn et al., 2004),
or post-processing methods (Bullmore et al., 1999; Soltysik and
Hyde, 2006) to separate true BOLD responses from motion artifact
responses.

Physiological noise consists of signal variation in images caused
by various processes of the human body. Weisskoff et al. (1993)
first reported the presence of cardiac and respiratory waveforms
in the power spectra of cortical voxel time series. Cardiac-driven
signal changes are mostly due to motion from vascular pulsations
in voxels near arterial and venous structures (Dagli et al., 1999).
Bulk susceptibility variations in the lungs during respiration leads
to systematic variations in the static magnetic field within brain
tissue (Raj et al., 2001). These field strength variations lead to
image shift, signal changes in the phase encoding direction, and
signal variation due to intravoxel dephasing. Mitra et al. (1997)
found vasomotor oscillations (0.1 Hz). Furthermore, researchers
have discovered low-frequency fluctuations (0.03 Hz) in fMRI data
that result from small fluctuations in end-tidal CO2 that occur nat-
urally during normal breathing (Wise et al., 2004). Fluctuations
in both the respiratory volume per time (RVT) (Birn et al., 2006)
and the cardiac rate (Shmueli et al., 2007) are also present in
fMRI data. Spontaneous BOLD fluctuations that occur without a
designated stimulus or task also represent a source of structured
noise in fMRI data (Biswal et al., 1995). Because physiological noise
results from physiological-dependent fluctuations in the baseline
signal, it is proportional to the MR  signal, S (Krueger et al., 2001):

�P = �S

where � is a tissue-dependent parameter. Physiological noise will
increase with the MR  signal, which, in turn, will increase with
flip angle (up to the Ernst angle) (Haacke et al., 1999), mag-
netic field strength, or voxel volume (Edelstein et al., 1986). With
increasing field strength, physiological noise limits the achiev-
able image signal-to-noise ratio (SNR) (Krueger et al., 2001),
but not the BOLD contrast (Gati et al., 1997). However, other
factors may  limit BOLD contrast above 7 T (Seehafer et al.,
2010).

Many retrospective methods have been developed to reduce
the cardiac and respiratory aspects of physiological noise. Biswal
et al. (1996) used digital notch filters to remove the frequency
components of cardiac and respiration noise. This technique fails,
however, when the noise is aliased into the frequency spectrum
of the task, as fMRI data is generally acquired with a temporal
resolution of 2–4 s. Hu et al. (1995) developed a method called
RETROKCOR that fits a low-order Fourier series to the k-space
time-series data using phase information from the respiratory or
cardiac cycles. However, only low-order corrections are possible,
and the method introduces unwanted correlations between vox-
els. Glover et al. (2000) developed a method called RETROICOR
that was  similar to the method of Hu et al. (1995) but operates
in image space. Cardiac and respiratory signals are monitored and
recorded during the scan. Physiological noise is modeled as a low-
order Fourier series, which can then be subtracted from voxel time
series.

Thomas et al. (2002) used principal component analysis (PCA)
and independent component analysis (ICA) methods to isolate
and remove structured noise (cardiac and respiration) and ran-
dom noise (white noise) from fMRI time series. After component
decomposition, the method involved spectral analysis, component
identification and deletion, and signal reconstruction. Thomas et al.
found that ICA was  a better method to remove structured noise,
while PCA was  better at removing random noise. Both methods
resulted in increased BOLD contrast sensitivity.

Behzadi et al. (2007) developed a method called CompCor,
which applied PCA only to voxel time series exhibiting the high-
est temporal standard deviations. These voxels were believed to
be contaminated with cardiac and respiratory noise. The top six
components resulting from this PCA analysis, believed to rep-
resent cardiac and respiratory noise, were regressed from the
entire data set. The reduction in noise achieved with CompCor was
found to be greater than that achieved with RETROICOR with the
extra advantage in that physiological monitoring was not required.
However, for subjects with especially severe motion artifacts,
CompCor identified signal components associated mostly with
motion.

Early papers suggested that respiration accounted for 10–20%
of the temporal variance at 1.5 T (Raj et al., 2001) or that cardiac
and respiration accounted for as much as 30–36% of the noise at 4 T
(Thomas and Menon, 1988). Therefore, existing methods to remove
physiological noise have focused predominantly on removing car-
diac and respiratory noise. However, recent evidence suggests
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