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h  i g  h  l  i g  h  t  s

• We  use  a normative  (Bayes  optimal)  model  of oculomotor  pursuit.
• We  average  the empirical  responses  of  subjects  performing  a pursuit  paradigm.
• We  invert  these  responses  using  the  pursuit  model  and dynamic  causal  modelling.
• We  thereby  estimate  the  precision  of subjects’  Bayesian  beliefs  from  their  pursuit.
• This  could  be  used  to quantify  abnormal  precision  encoding  in  schizophrenia.
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a  b  s  t  r  a  c  t

Background:  This  paper  introduces  a new  paradigm  that  allows  one  to quantify  the  Bayesian  beliefs
evidenced  by  subjects  during  oculomotor  pursuit.  Subjects’  eye  tracking  responses  to  a partially  occluded
sinusoidal target  were  recorded  non-invasively  and  averaged.  These  response  averages  were  then  ana-
lysed  using  dynamic  causal  modelling  (DCM).  In DCM,  observed  responses  are  modelled  using biologically
plausible  generative  or forward  models  –  usually  biophysical  models  of neuronal  activity.
New  method:  Our key innovation  is  to use a generative  model  based  on  a normative  (Bayes-optimal)
model  of active  inference  to  model  oculomotor  pursuit  in terms  of  subjects’  beliefs  about  how  visual
targets  move  and  how  their  oculomotor  system  responds.  Our  aim  here  is  to  establish  the  face  validity
of  the  approach,  by  manipulating  the  content  and precision  of sensory  information  –  and  examining  the
ensuing  changes  in  the  subjects’  implicit  beliefs.  These  beliefs  are  inferred  from  their  eye movements
using  the  normative  model.
Results:  We  show  that on  average,  subjects  respond  to  an  increase  in  the  ‘noise’  of  target  motion  by
increasing  sensory  precision  in their  models  of the  target  trajectory.  In other  words,  they  attend  more  to
the sensory  attributes  of a noisier  stimulus.  Conversely,  subjects  only  change  kinetic  parameters  in their
model  but  not  precision,  in  response  to increased  target  speed.
Conclusions:  Using  this  technique  one  can estimate  the  precisions  of  subjects’  hierarchical  Bayesian  beliefs
about target  motion.  We  hope  to  apply  this  paradigm  to  subjects  with  schizophrenia,  whose  pursuit
abnormalities  may  result  from  the  abnormal  encoding  of precision.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper considers the modelling of oculomotor pursuit using
active inference – a normative or Bayes-optimal formulation of
action and perception which has been used to address a range of
issues in the cognitive neurosciences (Friston et al., 2010a). In a
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previous paper, we  formulated oculomotor control during smooth
pursuit eye movements (SPEM) in terms of active inference, with
a special focus on how representations of uncertainty or preci-
sion could affect eye tracking behaviour (Adams et al., 2012). We
established that impairment in the encoding of precision (inverse
variance of random fluctuations) at higher levels of a hierarchical
model of oculomotor control (e.g., frontal eye fields or prefrontal
cortex) resulted in several SPEM abnormalities characteristic of
schizophrenia; e.g., a greater slowing of pursuit during target occlu-
sion. In this work, we  use a similar generative model to predict
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empirical eye movements, and thereby make inferences about how
subjects optimise their oculomotor responses to moving targets.
In particular, we were interested in whether we could induce
changes in the precision subjects ascribe to sensory information (by
changing the precision of target motion) and infer these subjective
changes from measured eye movements.

The model of pursuit used below is based upon active infer-
ence. Active inference is a corollary of the free energy principle –
a normative model of behaviour that appeals to Bayes optimality
principles. In brief, the principle says that we sample sensory inputs
to minimise prediction errors. Clearly, prediction errors depend
upon predictions and inference about hidden states of the world
causing sensory data. A crucial aspect of this inference is the proper
weighting of sensory evidence and prior beliefs. Operationally, this
rests upon weighting prediction errors in accord with their pre-
cision (reliability or inverse variability). This is formally identical
to weighted least squares in statistics. Anecdotally, one can regard
prediction errors as reporting what is newsworthy (what cannot
be predicted) and precision turns up the ‘volume’ of processing
channels with more reliable news.

In this paper, we present the methodology that enables one to
quantify subjective precision on the basis of empirical eye move-
ments – as a prelude to comparing normal and schizophrenic
cohorts (see Section 3). If changes in subjective precision due to
alterations in stimulus attributes can be estimated from pursuit
data, then perhaps abnormalities of cortical precision found in psy-
chiatric illness can be disclosed.

This paper comprises the following sections. Section 2.1 pro-
vides a brief introduction to active inference and predictive
coding. Active inference provides a normative model of oculo-
motor behaviour, given a generative model that subjects used to
predict their behaviour, described in Section 2.2. Section 2.3 pro-
vides a brief overview of dynamic causal modelling – a standard
variational Bayesian scheme for inverting dynamic or state space
models. Section 2.4 describes the experimental paradigm used
to elicit oculomotor pursuit under visual occlusion and Section
3 presents the dynamic causal modelling results using the active
inference model. Section 4 concludes with some comments about
the potential applications of this non-invasive approach to quan-
tifying subjective beliefs or expectations entertained by subjects –
and how the scheme can be extended to cover neurophysiological
responses.

2. Materials and methods

2.1. Active inference, generalised filtering and free energy

This section introduces active inference in terms of generalised
Bayesian filtering – also known as predictive coding. In brief, active
inference can be regarded as equipping standard Bayesian update
schemes with classical reflex arcs that enable action to fulfil pre-
dictions about (hidden) states of the world. We  will describe the
formalism of active inference in terms of differential equations
describing the dynamics of the world – and internal states of
the visual–oculomotor system. This scheme is used in subsequent
sections to predict pursuit movements under different levels of
confidence (precision) about hierarchical predictions.

Active inference is based on three assumptions that formalise
the notion that the brain generates predictions of its sensory sam-
ples to confirm hypotheses about the state of the world – and how
the world is sampled:

• The brain minimises the free energy of sensory inputs defined by
a generative model.

Fig. 1. Exchange with the environment. This schematic illustrates the dependencies
among various quantities modelling exchanges of an agent with the environment.
It  shows the states of the environment and the system in terms of a probabilistic
dependency graph, where connections denote directed dependencies. The quanti-
ties  are described within the nodes of this graph – with exemplar forms for their
dependencies on other variables (see main text). Hidden and internal states of the
agent are separated by action and sensory states. Both action and internal states –
encoding posterior or conditional expectations about hidden states – minimise free
energy. Note that hidden states in the real world and the form of their dynamics can
be different from that assumed by the generative model; this is why hidden states
are in bold and internal states are in italics. See main text for further details.

• The generative model used by the brain is hierarchical, nonlinear
and dynamic.

• Neuronal firing rates encode the expected state of the world,
under this model.

The first assumption is the free energy principle, which leads to
active inference in the embodied context of action. The free energy
here is a proxy for Bayesian model evidence. In Bayesian terms,
minimising free energy means that the brain maximises the evi-
dence for its model of sensory inputs (Gregory, 1980; Ballard et al.,
1983; Dayan et al., 1995; Olshausen and Field, 1996; Grossberg
et al., 1997; Bialek et al., 2001; Knill and Pouget, 2004), in accord
with the Bayesian brain hypothesis (Yuille and Kersten, 2006;
Maloney and Zhang, 2010). If we  also allow action to maximise
model evidence we  get active inference (Friston et al., 2010a). In this
setting, desired movements are specified in terms of prior beliefs
about hidden states in the generative model. Action then realises
prior beliefs by sampling sensory inputs to provide evidence for
those expectations. The second assumption above is motivated by
noting that the world is both dynamic and nonlinear and that hier-
archical structure emerges inevitably from a separation of temporal
scales (Ginzburg, 1955; Haken, 1983). The final assumption is the
Laplace assumption that, in terms of neural codes, leads to the
Laplace code, which is arguably the simplest and most flexible of
all candidate codes (Friston, 2009).

Under these assumptions, action and perception can be
regarded as the solutions to coupled differential equations describ-
ing the dynamics of the real world, action and perception (Friston
et al., 2010a):

s = g(x, v, a) + ωs

ẋ = f(x, v, a) + ωx

(1)

ȧ = −∂aF(s̃, �̃)

˙̃� = D  �̃ − ∂�̃F(s̃, �̃)
(2)

See Fig. 1 for a schematic summary of the conditional dependen-
cies implied by Eqs. (1) and (2). For clarity, real-world states are
written in boldface, while the states of the agent are in italics. The
∼ notation denotes variables in generalised coordinates of motion
where s̃ = (s, s′, s′′, . . .)  (Friston et al., 2010b). The pairs of equa-
tions are coupled because sensory states s(t) depend upon action
a(t) through non-linear functions (g, f) of hidden states and causes
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