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• A  new  method  for  identifying  EEG  correlates  of  continuous  independent  variables.
• Our  method  outperforms  canonical  correlation  analysis  and  common  spatial  patterns.
• When  applied  to real  EEG  during  music  it  finds  known  correlates  of music  tempo.
• The  method  also identifies  novel  neural  correlates  of  music  induced  emotion.
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a  b  s  t  r  a  c  t

Background:  The  electroencephalogram  (EEG)  may  be  described  by  a large  number  of  different  feature
types  and  automated  feature  selection  methods  are  needed  in  order  to  reliably  identify  features  which
correlate  with continuous  independent  variables.
New method:  A method  is  presented  for the  automated  identification  of features  that  differentiate  two  or
more  groups  in neurological  datasets  based  upon  a spectral  decomposition  of the  feature  set. Furthermore,
the  method  is  able  to identify  features  that  relate  to continuous  independent  variables.
Results:  The  proposed  method  is  first  evaluated  on synthetic  EEG  datasets  and  observed  to  reliably  identify
the  correct  features.  The  method  is then  applied  to EEG  recorded  during  a  music  listening  task  and  is
observed  to  automatically  identify  neural  correlates  of music  tempo  changes  similar  to  neural  correlates
identified  in  a previous  study.  Finally,  the  method  is  applied  to  identify  neural  correlates  of  music-induced
affective  states.  The  identified  neural  correlates  reside  primarily  over  the  frontal  cortex  and  are  consistent
with  widely  reported  neural  correlates  of  emotions.
Comparison  with existing  methods:  The  proposed  method  is compared  to  the  state-of-the-art  methods  of
canonical  correlation  analysis  and  common  spatial  patterns,  in  order  to  identify  features  differentiating
synthetic  event-related  potentials  of  different  amplitudes  and  is observed  to  exhibit  greater  performance
as  the  number  of  unique  groups  in  the  dataset  increases.
Conclusions:  The  proposed  method  is  able  to identify  neural  correlates  of  continuous  variables  in  EEG
datasets  and is  shown  to outperform  canonical  correlation  analysis  and  common  spatial  patterns.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The electroencephalogram (EEG) is a method for measur-
ing changes in electro-potential in the cortex related to the
activation levels of cortical neuronal populations (Niedermeyer
and Silva, 2005). It is a popular method for studying neuro-
electrophysiological correlates of cognitive processes and
behaviour.
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The EEG has a high temporal resolution and a wide spectral
range and may, therefore, be described by a very large number of
features. These include, for example, the band power within specific
frequency ranges, amplitudes over specific regions of the cor-
tex, or measures of interactions between different spatial regions
(Rahman et al., 2012). However, EEG has very poor signal to noise
ratio (SNR), which often means that many repeated trials are
required before cognitively relevant information emerges from the
background noise present in the signal (Niedermeyer and Silva,
2005).

Due to practical limits on the numbers of repetitions of cogni-
tive events participants in cognitive experiments may perform, an
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investigative researcher is often faced with a very large potential
feature space and a very small number of trials. Thus, identification
of reliable task-related features is a considerable challenge.

A number of approaches may  be taken to tackle this prob-
lem. Where particular cognitive processes within the EEG are
phase-locked to the trial commencement time and stationary, a
time-averaging approach may  be adopted to attempt to identify
features related to specific neural correlates. However, in cases
where physiological responses are not phase-locked (for example
band-power measures Pfurtscheller and Lopes da Silva, 1999) an
approach from machine learning may  be adopted (Alpaydin, 2004).

One such approach which has gained considerable traction in
recent years is common spatial patterns (CSP), which is based upon
eigen-decomposition of the covariance matrices of each group in
the dataset (Koles et al., 1990). This method was used originally
in the brain-computer interface (BCI) (Wolpaw et al., 2002) com-
munity to identify optimal features for separating two  groups of
events in the EEG and has since gained growing popularity for a
range of uses, for example, identifying neural activity related to
motor imagery (Friedrich et al., 2012). Extensions of the method
have also been proposed for multiple group cases (Grosse-Wentrup
and Buss, 2008).

However, while CSP is able to identify features which may  be
applied to optimally separate discrete groups of tasks, it is less
effective in the case of continuous variables. Thus, in the case of
correlation studies, where neural correlates are sought relating to
a continuous independent variable, it may  not be the most suitable
method.

An alternative approach, which may  be applied in this case is
canonical correlation analysis (CCA) (Knapp, 1978). CCA attempts to
find relationships between sets of independent variables, for exam-
ple between two  or more time series, and may  be used to identify
neural correlates of continuous variables (Hardoon et al., 2004).
However, CCA is only able to identify sets of variables which lin-
early correlate with the independent variables and, therefore, may
be limited in its applications (Hardoon et al., 2004).

To tackle these problems with CSP and CCA we have devel-
oped an alternative automated feature selection method that is
able to identify neural correlates of continuous independent vari-
ables. The proposed method is based upon eigen-decomposition of
the coarse-grained (rescaled) combined matrix of features and the
continuous independent variable.

We  first describe the method. We  then compare the method to
CSP and CCA on a synthetic test dataset before using it to attempt
to find feature sets which correspond to a continuous independent
variable in a study of neural correlates of music-induced emotions
and neural correlates of music perception.

2. Methods

2.1. Proposed method

The proposed method aims to identify features which co-
vary with an independent variable by first redistributing, then
coarse-graining, performing principal component analysis (PCA),
and clustering the set of available features. This can be summarized
as follows.

1. Prepare the data set by first uniformly redistributing the values
each feature takes.

2. Then coarse-grain the values each feature takes across all trials.
3. Calculate a covariance matrix from the coarse-grained feature

matrix to measure relationships within the dataset.
4. Perform principal component analysis (PCA) to identify direc-

tions of maximum variance.

5. Calculate the participation index, sort and extract the top q index
values. These index the features of interest.

For a data set D ∈ R
M×N of N trials, each trial may  be represented

by M features. Features may  describe the data in a number of dif-
ferent ways, for example, representing them in the time and/or
frequency domains. A feature vector comprises the values of that
feature for all trials in the dataset D. A feature vector is defined as

F i = [Di,1, . . .,  Di,N], i ∈ [1,  . . .,  M], (1)

where i denotes the i’th feature in the data set. An additional vector
is concatenated to the set of feature vectors, resulting in a total of
M + 1 feature vectors. This additional vector will contain the val-
ues taken by the continuous independent variable across the N
trials. We  will refer to this additional variable as the independent
covariate vector.

In order to improve the robustness of the selection of features
related to the independent covariate vector, the range of values
in the set of all feature vectors is uniformly redistributed over the
range 1, . . .,  u, where u denotes the number of unique values in the
independent covariate vector, and coarse-grained into u partitions.
This is done by first z-scoring the coordinates of each feature vector
to a mean of zero and a standard deviation of 1.

To improve the robustness of the feature selection in subsequent
steps, the complementary error function (1 – the error function) is
then applied to the normalised feature vectors (Hunter and Regan,
1972). Consequently, this allows us to use PCA to identify features
in the data. Finally, the coarse graining is completed by affine-
mapping the entries in each feature vector so that they fall into
the range 1, . . .,  u and rounding the values in the feature vector
in order to ensure that the number of discrete values taken by the
members of each feature vector is equal to u. This is done by divid-
ing the values within each feature vector by the maximum value in
the feature vector, multiplying them by u, and adding 1.

This results in a set of coarse-grained feature vectors
F i = [Di,1, . . .,  Di,N], where Di,n, n ∈ 1, . . .,  N, i ∈ 1, . . .,  (M + 1)
denotes the coarse-grained value of feature i, trial n.

It is now possible to identify informative features by employing
techniques related to finding clusters in multivariate datasets. One
of the clusters obtained as a result will contain the independent
covariate vector. The elements of this grouping therefore define
the features that are most closely related to it. Thus, these features
are taken to be the features that optimally relate to the independent
covariate vector.

To this end we adapted a form of spectral clustering introduced
in (Allefeld et al., 2007). The (M + 1) × (M + 1) covariance matrix ˙
is calculated from the coarse-grained collection of feature vectors.
Eigen decomposition is applied to the covariance matrix  ̇ to find
a set of eigenvalues and eigenvectors defined as

˙Vk = �kVk (2)

where �k denotes the eigenvalues and Vk the eigenvectors.
Eigenvalues are then sorted in descending order and the q eigen-

values in the top 5th percentile are identified. The corresponding
eigenvectors explain the majority of the variance in the set of fea-
ture vector projections onto the linear subspace spanned by these
eigenvectors V = [vi,k], k ∈ [1,  . . .,  q], ∀i ∈ [1,  . . .,  (M + 1)].

The Participation Index ( PI) (defined in (Allefeld et al., 2007))
provides a measure of the involvement of each feature vector in
each cluster

PIi,k = �k ∗ v2
i,k, ∀i = [1,  . . .,  (M + 1)], ∀k = [1,  . . .,  q], (3)

where the eigenvalues �k and their corresponding eigenvectors
have been pre-sorted in descending order of eigenvalue.

We first inspect the column of PI corresponding to the inde-
pendent covariate vector (PI(M+1),:). The largest PI in this column
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