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a  b  s  t  r  a  c  t

Specific  networks  of  interacting  neuronal  assemblies  distributed  within  and  across  distinct  brain  regions
underlie  brain  functions.  In  most  cognitive  tasks,  these  interactions  are  dynamic  and  take  place  at  the
millisecond  time  scale.  Among  neuroimaging  techniques,  magneto/electroencephalography  – M/EEG  –
allows  for detection  of very  short-duration  events  and  offers  the  single  opportunity  to  follow,  in time,
the  dynamic  properties  of cognitive  processes  (sub-millisecond  temporal  resolution).

In  this  paper,  we propose  a  new  algorithm  to track  the  functional  brain  connectivity  dynamics.  Dur-
ing  a  picture  naming  task,  this  algorithm  aims  at segmenting  high-resolution  EEG signals  (hr-EEG)  into
functional  connectivity  microstates.  The  proposed  algorithm  is  based  on  the K-means  clustering  of  the
connectivity  graphs  obtained  from  the  phase  locking  value  (PLV)  method  applied  on  hr-EEG.  Results
show  that  the  analyzed  evoked  responses  can  be  divided  into  six clusters  representing  distinct  networks
sequentially  involved  during  the cognitive  task,  from  the picture  presentation  and  recognition  to  the
motor  response.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

There is increasing evidence that cognitive functions arise from
the activation of networks distributed over distinct and possibly
distant brain regions as opposed to isolated focal areas (Sporns,
2010). Hence, efforts focused on the analysis of brain connectivity
as a key concept to understand brain cognitive functions. Due to
its excellent spatial resolution, fMRI has become one of the most
commonly used noninvasive methods to study cerebral functions
(Allen et al., 2012).

However, in many cases, the short duration of most cognitive
processes (∼500 ms  for picture naming, for example) would
greatly benefit from the use of techniques that have a much higher
time resolution (on the order of ms), which is not the case of
fMRI (∼1 s). Along this line, several studies indicated that the
use of electroencephalography (EEG, 1 ms  time resolution for
signals classically sampled at 1 kHz) combined with appropriate

∗ Corresponding author at: INSERM, U1099, 35000 Rennes, France.
Tel.: +33 223235605.

E-mail address: mahmoud.hassan@univ-rennes1.fr (M.  Hassan).

signal processing techniques can bring relevant information about
normal networks during cognitive activity (Rodriguez et al., 1999)
or about altered networks associated with tumors (Bartolomei
et al., 2006) for instance.

This excellent temporal resolution of the EEG signals allowed
us to analyze the dynamic properties of cognitive processes, an
issue so far addressed in a few studies only. In Murray et al.
(2008), authors proposed an algorithm based on the amplitude
of event related potentials (ERPs) to follow time-varying volt-
age topographic maps. However, these algorithms do not account
for brain connectivity quantified directly from scalp signals (elec-
trode space) or indirectly from reconstructed brain sources (source
space).

Regarding the approaches based on the connectivity analysis,
most of reported methods make use of a constant time window to
track the dynamics of functional connectivity, as estimated from
EEG recordings. This window is typically chosen either empirically
or based on a priori information about the analyzed task (Rodriguez
et al., 1999). A few attempts have been recently reported to avoid
this constraint (De Vico Fallani et al., 2008; Dimitriadis et al.,
2010; Allen et al., 2012). However, most of proposed algorithms
are not adapted to tracking changes over very short durations (in

http://dx.doi.org/10.1016/j.jneumeth.2015.01.002
0165-0270/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jneumeth.2015.01.002
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2015.01.002&domain=pdf
mailto:mahmoud.hassan@univ-rennes1.fr
dx.doi.org/10.1016/j.jneumeth.2015.01.002


78 A. Mheich et al. / Journal of Neuroscience Methods 242 (2015) 77–81

the order of 500 ms,  as in the case of responses evoked by visual
stimuli).

In this paper, we propose a novel algorithm to track the
dynamics of brain functional connectivity at millisecond scale. The
proposed algorithm is based on the K-means clustering of the
connectivity networks obtained by the phase locking value (PLV)
method. Performance evaluation was assessed on high-resolution
electroencephalographic (hr-EEG) signals recorded in subjects dur-
ing a picture naming task.

2. Materials and methods

2.1. Functional connectivity measure

Functional connectivity is classically defined as the temporal
correlation (wide sense) among electrophysiological signals gen-
erated by distinct neuronal assemblies (Friston, 1994). Several
methods have been proposed to quantify brain functional con-
nectivity. In this study, we used a method, which belongs to the
so-called “phase synchronization” (PS) family.

It is well known that the respective phases of two oscillators may
synchronize even if their amplitudes stay uncorrelated. The general
principle of PS methods is to detect the existence of a phase locking
between two systems defined as:

ϕxy(t) = |˚x(t) − ˚y(t)| ≤ C

where ˚x(t) and ˚y(t) are the unwrapped phases of the signals (x
and y) representative of the two systems at time t and C a con-
stant. The first step for estimating the phase synchronization is
to extract the instantaneous phase of each signal. In this study,
we used the method based on Hilbert transform. The second step
is the definition of an appropriate index to measure the degree
of synchronization between estimated instantaneous phases. To
proceed, we used the phase locking value (PLV) (Lachaux et al.,
1999), as illustrated in Fig. 1B. For each channel pair, x and y, at time
t (t = t1, . . .,  tT where T = D * fs; D and fs denote the signal length rela-
tive to the onset and the sampling frequency, respectively) for the
N trials and for subject j (j = 1, . . .,  M,  where M denotes the number
of subjects), PLV is defined as:

PLVj
xy(t) = 1

N

∣∣∣∣∣
N∑

n=1

ϕx(t) − ϕy(t)

∣∣∣∣∣ (1)

To reduce the effect of correlations between near electrodes,
we apply a normalization procedure (z-score) so that the PLV
values were compared with the 200 ms  baseline preceding the
presentation of the image. Let �xy and �xy are the mean
and standard deviation computed from a 200 ms  pre-stimulus

baseline. The normalized PLVs are then defined as ¯PLV
j
xy(t) =

(PLVj
xy(t) − �j

xy)/�j
xy. A thresholding procedure is then applied on

the functional connectivity values in order to retain the strongest
functional connections. The connectivity measure was computed
in the low gamma  frequency band (30–45 Hz). More precisely,
the phases were estimated for each frequency and the aver-
age phase at 30–45 Hz was used. Indeed, this frequency band
was shown to be highly relevant in the context of the cogni-
tive task performed by subjects, as reported in Rodriguez et al.
(1999).

The PLVs were then averaged over subjects:

¯PLVxy(t) = 1
M

M∑
j=1

PLVj
xy(t) (2)

where ¯PLVxy(t) represents the general term of the average adja-
cency matrix ¯PLV(t) which defines a functional connectivity graph

G at each time t, G = {G(t), t = 1, . . .,  T}, computed for the V pairs of
x and y channels, where V is equal to (Nc · (Nc − 1)/2)) and Nc is the
number of channels in the hr-EEG montage. According to Eqs. (1)
and (2), T adjacency matrices are obtained.

2.2. Segmentation algorithm

The objective of this algorithm is to identify clusters among the
T graphs G (t). As illustrated in Fig. 1C, the proposed algorithm is
based on three main steps:

Step 1 (Initialization). To start with, K graphs Gk, Gk = {Ḡk, k =
t1, . . .,  tK }, are selected where k = tl and l is randomly chosen in (K
varies from 3 to 12 and k varies from 1 to K) with the restriction
of rejecting the K graphs if the time interval between two tl is less
than 30 ms.

Step 2 (Assignment). The spatial correlation sCk(t) between G(t)
and Ḡk is then computed as follows:

sCk(t) =
∑V

i=1Ḡk
i

· Gi(t)√∑V
i=1Ḡk

i

2
·
√∑V

i=1G2
i
(t)

(3)

where i denotes the ith edge in G(t) and Ḡk. As depicted in Eq.
(3), sC is normalized by the variance of graphs G and Gk. Thus, sC
ranges from 0 to 1 high values denote graph with high similar-
ity. Conversely, low values are indicative of low similarity between
graphs.

Each graph G(t) is then assigned to the cluster for which the spa-
tial correlation was the highest. The assigned clusters are defined
as Ĝk:

Ĝk = {G(t) : sCk

G(t),Ḡk
≥ sCk′

G(t), ¯Gk′ ∀ 1 ≤ k′ ≤ K} (4)

From these spatial correlation values, the global explained vari-
ance (GEV) is calculated as defined in Murray et al. (2008):

GEV =
K∑

k=1

GEVk (5)

GEVk =
T∑

t=1

(sC
G(t),Ḡk )2.�G(t),Ĝk where �G(t),Ĝk =

1  if G(t) ∈ Ĝk

0 if G(t) /∈ Ĝk

(6)

Step 3 (Update). At each iteration, the new centroids Ḡk are
updated by averaging all the graphs yielding to the same cluster

Ḡk = 1∣∣Ĝk
∣∣
∑

G′∈Ĝk

G′ (7)

For each K, Steps 2 and 3 were repeated 500 times. The set of
centroids leading to the highest GEV was  retained. When the algo-
rithm converges (reaching the highest GEV), K + 1 graphs Ḡ are then
selected randomly and the entire above procedure (from Step 2 to
Step 3) is repeated until K = 12.

To choose the optimal number of clusters, we  used a method
based on the cross validation (CV) criterion (Murray et al., 2008)
which is a ratio between the GEV and the degrees of freedom for
a given set of graphs. As reported, the global minimum of this
criterion gives the optimal number of segments. Note that in the
same segment, the graphs can have different SC values with the
same cluster and therefore two  consecutive graphs (in time) can
be classified in two distinct clusters. To overcome this, the decision
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